Способы защиты от перенапряжений в электрических сетях

Способы защиты от перенапряжений в электрических сетях

Главная » Статьи » Способы защиты от перенапряжений в электрических сетях 09.06.2015

Под перенапряжением электрической сети обычно понимают отклоняющийся от нормы режим работы внутри этой сети. Он характеризуется сверхмерным увеличением показателя значения напряжения, которое выше, чем допустимый показатель значения для этого участка электрической сети.

Проблема, возникающая при перенапряжении или изменении напряжения, состоит в том, что стандартная изоляция на оборудовании большинства электрических установок поддерживает работу электрической сети только в нормальном для нее режиме.

При перенапряжениях – эта изоляция становится непригодной, что и является причиной повреждения оборудования электрических станций и приборов бытового назначения, также представляет собой угрозу здоровью людей и обслуживающего персонала вблизи неисправного участка.

Какими бывают виды перенапряжений?

Перенапряжения можно разделить на два вида – коммутационные перенапряжения электрической сети или внутренние или природные перенапряжения, они же внешние.

Природные перенапряжения в электрической сети имеют характер явлений атмосферного электричества.

Коммутационные перенапряжения имеют место внутри электрических сетей. Их причинами могут быть как незапланированные изменения нагрузки линий электропередач, так и послеаварийные режимы в работе электросетей и феррорезонансные проявления.

Как можно защититься от перенапряжений?

Для электроустановок применяются специальные виды защитного оборудования, рассчитанных на работу в условиях возможных перенапряжений электросети – всевозможные разрядники и нелинейные ограничители перенапряжения, или же – ОПН.

Главный конструктивный элемент в этом защитном оборудовании – это тот элемент, который обладает нелинейными характеристиками. Особенность такого элемента состоит в том, что он меняет свой показатель сопротивления в зависимости от того, какое значение напряжения к нему прилагается.

Как работают нелинейные защитные элементы?

Ограничитель напряжения или используемый разрядник подсоединяют к рабочей шине напряжения  и заземляющему контуру электрической установки.

При нормальной работе – ОПН оказывает большое сопротивление и не пропускает через себя напряжение.

При перенапряжении он или подключенный вместо него разрядник снижают свое сопротивление, что позволяет проходить через него напряжению, деактивируя его скачок в контур заземления.

Таким образом, задача разрядника или ОПН состоит в том, чтобы при перенапряжении соединить электрический провод с землей.

Где и как устанавливается защита от перенапряжений?

ОПН и разрядники используются с целью защитить оборудование, находящееся на территории распределительных устройств электрических установок. Их устанавливают не только там, но и в конце и начале линий электрической передачи с напряжением в 10 кВ и 6 кВ, если те не оснащены специальным грозозащитным тросом.

Какие есть способы защиты от природного перенапряжения?

Чтобы защитить линии электропередач от вероятных изменений в напряжении внешнего характера на металлические и ЖЗБ конструкции с открытыми распределительными устройствами устанавливаются стержневые отводы для молний.

Для высоковольтных линий с напряжением в 35 кВ применяются грозозащитные тросы – они же тросовые молниеотводы. Их располагают в верхней части опоры линии электропередачи на всем ее протяжении, соединяя их с металлическими элементами на линейных порталах в открытых распределительных устройствах подстанции.

Таким образом, все атмосферные заряды электричества притягиваются непосредственно к молниеотводам и не попадают на токопроводящие части электрических установок и оборудования.

Важный момент в защите оборудования любых электрических установок и станций заключается в своевременном проведении периодических осмотров и ремонтов систем защиты от перенапряжений, прохождении ими соответствующих испытаний и контроля.

Также проверку проходят заземляющие контуры и отвечающие за них устройства, осуществляются периодические регулярные замеры напряжения в электросети и ее элементах.

Как защититься от перенапряжений в низковольтной сети?

Для низковольтных сетей перенапряжение характерно в не меньшей степени, чем для высоковольтных сетей. К низковольтным сетям относятся сети в 220380В, изменение напряжения в которых может привести к таким последствиям, как выход из строя электроприборов, подключенных к этой сети и ее непосредственного оборудования.

Чтобы защититься от вероятности такого чрезмерного напряжения, для домашней электросети применяются различные стабилизаторы и реле напряжения, всевозможные бесперебойники и  прочие устройства.

Наиболее популярны и эффективны в качестве способов защиты домашней сети от возможных скачков напряжения защитные устройства по типу источников бесперебойного питания и модульные устройства, предназначенные для защиты от перенапряжений импульсного характера. Последние устанавливаются непосредственно в распределительный щиток домашнего напряжения.

Что касается защиты от перенапряжений на различных предприятиях и в низковольтных распределительных устройствах электрических установок и ЛЭП, то для них предусмотрены ограничители перенапряжения, которые работают по тому же принципу, что и вышеотмеченные высоковольтные ОПН.

Источник: http://www.ognetika.com/sposoby-zashhity-ot-perenapryazhenij-v-elektricheskix-setyax/

Способы защиты от перенапряжений в квартирах и частных домах

9 августа 2017 г. в 12:46, 1495

Перенапряжения — это нарушения в нормальном режиме работы электросети, связанные с увеличением напряженности электрического поля до значений, опасных для элементов электроустановок и проводящих линий.

В момент перенапряжения на номинальное сетевое напряжение накладывается мгновенный импульс или дополнительная волна напряжения. Такие явления могут стать причиной повреждения изоляции и вызвать пожар, могут создать серьезную угрозу для работоспособности оборудования, а порой и для жизни и здоровья людей.

Перенапряжения имеют разную природу. Однако современное защитное оборудование позволяет нейтрализовать последствия всех видов нарушений в работе сети.

Причины перенапряжений

В зависимости от источника возникновения, можно выделить четыре типа перенапряжений: атмосферные, коммутационные, переходные перенапряжения промышленной частоты и перенапряжения, вызванные электростатическим разрядом.

Атмосферные перенапряжения связаны с грозовыми явлениями. Во время грозы в атмосфере происходит до 30-100 разрядов в секунду, при этом ежегодно земля испытывает около 3 миллиардов ударов молнии.

В частности, с повышенным вниманием надо относиться к молниезащите отдельно стоящих на равнине домов. Еще большую опасность создают расположенные поблизости от дома высокие деревья или сооружения (мачты, трубы).

Также к зонам повышенных рисков относят горы, влажные участки возле водоемов, железистые почвы.

Нередко молния напрямую поражает трансформаторы, счетчики электроэнергии и бытовые электроприборы. Она служит причиной возникновения перенапряжений во всех проводящих элементах. Ток молнии вызывает тепловой эффект и расплавление изоляции в точках воздействия и это может стать причиной пожара.

Канал молнии, при прохождении по нему сильного импульсного тока, действует как антенна, вызывая перенапряжения в радиусе нескольких километров. Также во время грозы повышается потенциал земли из-за циркуляции тока молнии в грунте.

Таким образом, последствия грозовых явлений не менее опасны, чем прямой удар молнии. Именно поэтому важно обеспечивать не только первичную защиту зданий (молниеотводы), но и продумывать вторичную защиту внутреннего оборудования, в частности питающих и телекоммуникационных сетей.

Это касается не только частных домов, но и городских квартир, которые защищены от прямого удара молниеотводами.

Коммутационные перенапряжения возникают непосредственно в электрических сетях, поэтому их иногда называют «внутренними».

Они представляют собой волны перенапряжения высокой частоты — от нескольких десятков до нескольких сотен кГц.

Коммутационные перенапряжения могут быть обусловлены резкими перепадами нагрузки на линиях электропередачи, феррорезонансными явлениями и другими аварийными режимами работы распределительных сетей.

Причины коммутационных перенапряжений также могут быть связаны и с функционированием оборудования на стороне потребителя.

К примеру, с отключением устройств защиты (плавких предохранителей, выключателей), отключением или включением аппаратуры управления (реле, контакторов), пуском или остановом мощных двигателей.

По большому счету источниками коммутационных перенапряжений могут быть любые устройства, имеющие в своем составе катушку, конденсатор или трансформатор на входе питания, в том числе телевизоры, принтеры, компьютеры, электропечи, фильтры и т.д.

Коммутационные перенапряжения развиваются носят повторяющийся характер и тем самым вызывают преждевременное старение оборудования.

Переходные перенапряжения промышленной частоты характеризуются тем, что имеют такую же частоту, как и сеть (50, 60 или 400 Гц).

Они возникают из-за повреждения изоляции между фазой и корпусом или фазой и землей (в сетях с заземленной нейтралью), а также из-за разрыва нейтрального проводника; при этом однофазные устройства получают напряжение 400 В.

Другая причина переходных перенапряжений связана с пробоем проводника, например, при падении кабеля высокого напряжения на низковольтную линию. Третья причина — образование дуги при срабатывании защитного искрового разрядника высокого или среднего напряжения, вызывающее повышение потенциала земли.

Перенапряжения из-за электростатического разряда опасны главным образом для высокочувствительных электронных устройств. Они могут возникать в сухой среде, где накапливается сильное электростатическое поле.

К примеру, человек, идущий по ковру в изолирующей обуви, становится электрически заряженным до напряжения нескольких киловольт.

Когда он прикасается к проводящей конструкции, возникает электрический разряд в несколько ампер с очень коротким временем нарастания (несколько наносекунд).

Способы защиты от перенапряжений

Устройства первичной защиты от перенапряжения необходимы для предотвращения прямых ударов молнии — они улавливают и отводят ее ток на землю. Такие устройства располагают выше уровня всех остальных конструкций, причем их высота зависит от размера защищаемой зоны. Как правило, для защиты жилых объектов используется стержневые молниеотводы, снабженные проводниками-токоотводами.

Устройства вторичной защиты позволяют обеспечить нормальную работу оборудования и сетей внутри здания в условиях атмосферных и коммутационных перенапряжений. Их можно разделить на две большие группы — устройства последовательной и параллельной защиты. К первой группе относятся:

  • Трансформаторы, устраняющие определенные гармоники за счет соответствующего соединения первичной и вторичной обмоток; такая защита не очень эффективна.
  • Фильтры, служащие для ограничения коммутационных перенапряжений в четко заданном диапазоне частот. Такие устройства не подходят для ограничения атмосферных перенапряжений.
  • Ограничители перенапряжений, состоящие из воздушных катушек индуктивности, ограничивающих перенапряжения, и разрядников, отводящих токи. Наиболее подходят для защиты чувствительного электронного оборудования, но защищают только от перенапряжений. Представляют собой громоздкие и дорогостоящие устройства.
  • Сетевой фильтр — надежное устройство для защиты компьютеров, ноутбуков и электронной техники от перепадов напряжения — одной из причин выхода их из рабочего состояния и утери персональных данных. Обеспечивает эффективное электропитание и подавляет импульсные и высокочастотные помехи в электрической сети.

Сетевой фильтр PM6U-RS APC by Schneider Electric.

Стабилизаторы напряжения служат для нормализации сетей переменного тока и устраняют проблему колебания напряжения. В частности, анализируют входное напряжение, а затем, переключая обмотки своего трансформатора, поддерживают необходимый диапазон напряжения на выходе.

Стабилизатор напряжения LS1500-RS APC by Schneider Electric

Источники бесперебойного питания служат для поддержки работы оборудования в автономном режиме за счет энергии батарей в случаях несанкционированного ее отключения.

Источник бесперебойного питания BR1500G-RS APC by Schneider Electric. Куда более популярны устройства параллельной защиты, которые могут использоваться в установках любой мощности. Важно знать, что номинальное напряжение такого устройства должно соответствовать сетевому напряжению на вводах установки.

В режиме «ожидания» (при отсутствии перенапряжений) ток утечки не должен протекать через устройство защиты, но при возникновении перенапряжения, превышающего допустимое значение, устройство должно моментально отводить вызванный перенапряжением ток на землю.

Важной характеристикой такого оборудования является его быстродействие.

В жилых домах для защиты от перенапряжений чаще всего применяется модульное оборудование, устанавливаемое в распределительных щитах.

В частности, это устройства защиты от импульсных перенапряжений — УЗИП и дифференциальные выключатели нагрузки с защитой от превышения напряжения — УЗО.

Также существуют сменные ограничители перенапряжений и ограничители перенапряжений для защиты силовых розеток, обеспечивающие вторичную защиту подключенного оборудования.

Некоторые ограничители встраиваются непосредственно в устройства, потребляющие электроэнергию, однако они не могут защитить от больших перенапряжений. Для защиты телефонных и коммутационных сетей от перенапряжений используются слаботочные разрядники, которые также устанавливаются в распределительных щитах или встраиваются в устройства, потребляющие электроэнергию.

Оборудование Schneider Electric для защиты от перенапряжений

Наиболее эффективными средствами для обеспечения защиты от перенапряжений в квартирах и частных домах служат модульные аппараты, устанавливаемые в распределительные щиты. Также с целью частичной защиты могут использоваться сетевые фильтры.

Дифференциальные выключатели нагрузки (УЗО) предназначены в первую очередь для защиты людей от поражения электрическим током и предотвращения возгораний.

Однако в линейке модульного оборудования Easy9, разработанного компанией Schneider Electric, также есть УЗО, совмещающие защиту от утечки тока и от превышения напряжения.

Читайте также:  Основные мероприятия по снижению потерь в электрических сетях

Если в сети возникнет переходное напряжение промышленной частоты, к примеру, из-за обрыва нейтрального провода в подъезде многоквартирного дома, питание будет отключено. Такое устройство позволит защитить и проводку, и оборудование, и человеческую жизнь.

Устройства защиты от импульсных перенапряжений (УЗИП) помогают предотвратить последствия от непрямых ударов молний и аварийных скачков напряжения, губительных для дорогостоящей электроники; они компенсируют сильные броски напряжения, с которыми УЗО справиться не в состоянии. Как правило, электроника может выдержать перенапряжения до 1300-1500 В, в том время, как скачки напряжения при ударе молнии могут достигать 10 000 В. Задача УЗИП — сгладить импульсные перенапряжения до приемлемого уровня в 1000-1300 В.

Наиболее распространенный вариант УЗИП — это сетевые фильтры (удлинители с кнопкой), однако УЗИП в модульном исполнении (к примеру, Easy9 от Schneider Electric) обеспечивает значительно более надежную и качественную защиту от перенапряжений.

К тому же, размещение аппарата в распределительном щитке на входе в квартиру позволяет защитить не только компьютер, но и кухонные приборы, климатическое оборудование, охранную сигнализацию, мультимедийные системы, поставленные на зарядку смартфоны и т.д.

К сожалению, пока модульными аппаратами УЗИП оснащено не более 1 % российских домохозяйств.

Смотреть видеосюжет об основных преимуществах автоматов Easy9, Домовой и Acti 9

При выборе устройств защиты от импульсных перенапряжений важно учитывать наличие молниеотвода, организацию системы заземления, информацию о токах короткого замыкания (КЗ).

Наличие УЗИП обеспечивает полную защиту системы электроснабжения квартиры или частного дома и гарантирует сохранность всех видов дорогостоящей бытовой техники и электроники.

Ограничители перенапряжений Acti 9 предназначены в первую очередь для промышленных и административных зданий. Однако и в этой серии есть оборудование, которое при необходимости можно применять в жилых помещениях для надежной защиты от атмосферных перенапряжений.

Это ограничители перенапряжения типа 2 со встроенным разъединителем — iQuick-PF, iQuick-PRD и модульные ограничители перенапряжений типа 2 — iPF & iPRD.

В оборудовании Acti 9 предусмотрена сертифицированная координация срабатывания с автоматическими выключателями, кроме того, аппараты очень легко монтировать на объекте, а их состояние можно отслеживать удаленно с помощью системы мониторинга. Для телекоммуникационных сетей могут использоваться устройства защиты iPRC и iPRI.

Помимо этого в продуктовом портфеле Schneider Electric есть бытовые устройства защиты от всплесков напряжения APC SurgeArrest Performance. Сетевые фильтры этой серии предназначены для обеспечения минимально необходимой защиты компьютеров, бытовых электронных приборов и телефонных линий от импульсных помех.

При выборе решения для защиты от перенапряжения, важно учитывать стоимость защищаемого оборудования и последствия его выхода из строя.

А также риски возникновения перенапряжений, которые напрямую связаны с состоянием сети и грозовой активностью в конкретной местности.

Продумывая защиту электрооборудования, важно не забывать и о телекоммуникационных сетях, которые также могут пострадать от перенапряжений.

Источник: https://www.elec.ru/articles/sposoby-zashity-ot-perenapryazhenij-v-kvartirah-i/

Защита от перенапряжения в частном доме

Довольно часто происходят поломки электрической бытовой техники, ведь любой электротехнический агрегат при создании рассчитывается на работу с определенным уровнем электроэнергии, т.е. на конкретные показатели силы и напряжения тока в сетях подключения. Поэтому при превышении этих норм может случиться аварийная ситуация.

Последствия перенапряжения в условиях частного дома

Использование дорогостоящей домашней техники, агрессивные природно- атмосферные явления, не слишком высокий уровень прокладки линий электропередач делает жизненно необходимым для собственников квартир и домов принятие мер по защите от перенапряжения электросетей в частном доме и минимизации возможных последствий.

Откуда возникает перенапряжение

Планировка и строительство многих многоэтажек еще пару десятков лет назад производилась без прицела на сегодняшнее многообразие бытового электрооборудования: микроволновки, многокамерные холодильники, утюги высокой мощности и другие приборы, имеющие электрическое питание. Поэтому максимумы потребления электричества по утрам и вечерам пагубно влияют на работу всей электросети в любом жилище.

Электричество, текущее по кабелю или проводу, неспособному выдерживать такую нагрузку, способствует их ненормальному нагреву в дневные часы и охлаждению в вечерние. В силу законов физики, проводник ослабевает, поскольку он делается то шире, то уже.

Контакты в щитке на первых этажах или в едином вводно-распределяющем устройстве в доме заметно ослабевают. Также нулевые контакты могут отгореть, что приводит к перепаду напряжения от 110 до 360 вольт на всех этажах, выше этажа с перегоревшими контактами.

Перенапряжение в электросети может произойти в результате попадания молниевого разряда в линию электропередач, подстанцию или элементы дома, при этом сила тока просто огромная, порядка 200 килоампер. При попадании в молниеприемник и дальнейшем прохождении молнии по контуру заземления в проводниковых материалах возникает электродвижущая сила, измеряемая в киловольтах.

Также вызвать резкий скачок напряжения могут сварочные работы или одновременное включение многими соседями электроприборов или подключение/отключение мощного потребителя. Для защиты дорогостоящей электротехники и всего частного дома необходима защита от перенапряжения в сети.

Особенности защиты домашней электропроводки

Организация защиты от возникающего высокого напряжения – один из ключевых вопросов при прокладке электросети в жилом доме. Осуществляется она с помощью особых трансформаторов и фильтров сети. Во многих домах на этажных щитках устанавливаются автоматические выключатели, которые защищают от электротоков при коротком замыкании и временных перегрузок.

Когда возможна высокая нагрузка, все устройства, защищающие сети от повышенного напряжения, должны иметь приспособления для автоотключения и выключатели, реагирующие на изменения показателей тока. Как правило, самая надежная защита от подобных скачков ставится на входном силовом проводе, поскольку именно он испытывает наибольшее воздействие во время пиков нагрузки.

Схема защиты от перенапряжения домашней электросети бывает простой и многоуровневой.

Простая – представлена в основном реле перенапряжения в этажных щитках, а многоступенчатая (комбинированная, защищающая как от бытовых скачков напряжения, так и от импульсных, при грозах) – УЗИП, т.е.

устройства защиты от импульсных перенапряжений. Такие устройства наиболее часто встречаются в частных домах.

Устройство защиты от импульсного перенапряжения

Обратите внимание! Электронные приборы выходят из строя как из-за повышенного, так и из-за пониженного напряжения в сети (например, холодильники тяжело запускаются, что негативно сказывается на их дальнейшей работе).

Изоляционные слои домашних электросетей рассчитаны, как правило, на стандартные 220в, поэтому, если напряжение возрастает многократно, в диэлектрическом слое проскакивает искра, которая может спровоцировать электродугу и дальнейшее возгорание.

Чтобы не допустить негативных последствий, применяют следующие защиты, функционирующие по таким принципам:

  • при резком внеплановом повышении напряжения происходит отключение электросхемы в доме или в квартире;
  • вывода полученного сверхнормативного электрического потенциала от электроприборов путем перевода его в земляной контур.

Если напряжение поднимается незначительно (например, до 380 вольт), на помощь приходят различные стабилизаторы. Однако их защитные возможности довольно ограничены – они больше рассчитаны на поддержание заданных рабочих значений в электросетях.

Стабилизаторы напряжения применяются для поддержания рабочих параметров электросети

При проектировании защиты для частного дома рассматривают различные конструкционные решения и их технические характеристики.

Необходимо учитывать принципы формирования базы ограничителей перенапряжения (опн). Например, газонаполненные разрядники после того, как импульс прошел, пропускают через себя т.н. сопровождающий ток, напряжение которого сопоставимо с коротким замыканием.

По этой причине они сами могут быть источником возгорания, и их нельзя применять для защиты от электрического пробоя.

Для домашних сетей чаще всего применяют варисторное устройство защиты (полупроводниковые резисторы) – реостаты, скомпанованные из варисторных «таблеток» из смеси оксидов цинка, висмута, кобальта и других.

При штатном функционировании электросети такой автомат защиты допускает микроскопические утечки, а при проходе импульса повышенной вольтажности – способен мгновенно перестроиться на режим «туннеля» и «спустить» больше тысячи ампер за очень короткий промежуток времени, поскольку сопротивление на этом приспособлении снижается с возрастанием силы тока, после чего происходит быстрое возвращение к штатной «боевой готовности».

Варисторные таблетки невелики по размеру

Классы стойкости электропроводки

Все электроприборы в бытовых зданиях разделяется по четырем основным категориям, в зависимости от максимально выдерживаемого перенапряжения:

  • IV категория – до 6 киловольт;
  • III категория – до 4 киловольт;
  • II категория – до 2,5 киловольт;
  • I категория – до 1,5 киловольт.

В соответствии с этими категориями выстраивается система защиты, которая сокращенно называется узо (устройство защитного отключения) с защитой от перенапряжения, в целях маркетинга их чаще всего называют ограничителями, используют и другие наименования. Ограничители монтируются по ходу движения возможного импульса.

Так, на участке от вводного щитка идет 6-киловольтный импульс, в первой зоне он снижается ограничителем перенапряжения до 4 киловольт, в следующей зоне он падает до 2,5 киловольт, а в жилой зоне с помощью УЗИП III категории потенциал импульса снижают до 1,5 киловольт.

Устройства защиты всех классов функционируют в комплексе, последовательно понижая потенциал до нормальных значений, с которыми легко справляется изоляция домашней электропроводки.

Важно! При неисправности хотя бы одного из звеньев этой защитной цепочки может возникнуть электропробой в изоляции, что приведет к выходу конечного электроприбора из строя. Поэтому необходимо периодически проверять исправность каждого элемента устройств защитного отключения.

Основные устройства системы защиты

Один из лучших способов спасти электросеть от скачков напряжения – монтаж стабилизатора, подходящего по техническим характеристикам. Это недешевые устройства, и не всегда они используются, поскольку напряжение в сетях и так бывает достаточно стабильным.

Также устранить нестабильность в работе сети помогают реле контроля напряжения. При обрыве нулевой жилы и замыкании в провисших кабелях такое реле способно включить защитные функции даже быстрее стабилизатора, нужно лишь 2-3 миллисекунды.

Реле контроля напряжения помогает справиться с импульсами в сети

Такие реле очень компактны – для монтажа они требуют меньше места, чем стабилизаторы, легко ставятся на простейшую din-рейку, кабеля подключаются элементарно (в отличие от монтажа стабилизаторов, когда вынужденно вклиниваются в электросеть или устанавливают особый короб для него). Стабилизаторы заметно гудят, поэтому в жилых помещениях их устанавливать нежелательно, а вот реле работают практически бесшумно. Кроме того, аппараты, контролирующие разность электрических потенциалов, потребляют очень мало электричества. Цена на такие реле в несколько раз ниже тех, что сложились на стабилизаторы.

Принцип работы реле контроля состоит в том, что при постоянном поступлении электротока устройство определяет разность потенциалов и сравнивает ее с допустимыми значениями.

Если показатели в норме, ключи остаются открытыми, и ток продолжает течь по сети. Если же проходит мощный импульс, происходит моментальное закрытие ключей и отключение подачи электроэнергии потребителям.

Такая быстрая и однозначная реакция помогает обезопасить все подключенные бытовые агрегаты.

Дополнительная информация. Возвращение в штатный режим происходит с некоторой задержкой, регулируемой таймером. Это необходимо для того, чтобы крупные электроприборы, такие как холодильники, кондиционеры и другие, включились с соблюдением правил и технической настройкой.

Подключение реле производится по фазному кабелю, при этом нуль-кабель включается во внутреннюю схему для питания энергией.

Схема подключения реле контроля потенциалов

Имеется два способа: сквозное подключение (по прямой) или с использованием прибора – контрактора для коммуникации. Оптимально подключать релейный механизм до подключения счетчика, чем обеспечится и его защита от перенапряжения. Однако, при наличии на приборе учета пломбы придется монтировать реле за ним.

Импульсные перенапряжения в электросети частных домов возникают из-за грозы с молниями или коммутационных скачков. Для безопасности электропроводки применяются специальные устройства УЗИП.

Как правило, это ограничители перенапряжений нелинейные (ОПН), стабилизаторы и реле контроля потенциалов.

Конечно, обустройство такой системы – мероприятие затратное, однако его стоимость гораздо ниже дорогих электробытовых приборов.

Видео

Источник: https://amperof.ru/bezopasnost/zashhita-perenapryazheniya-chastnom-dome.html

Защита от перенапряжения

Перенапряжения, которые возникают в электросети, сопровождаются, как правило, выходом из строя электрических приборов. Кроме того, перенапряжения, могут привести к таким негативным последствиям как пожар или даже гибель людей. В данной статье рассмотрены устройства, которые применяются для защиты от перенапряжения в сети.

Читайте также:  Тяговые подстанции

Довольно часто в наших домах и квартирах можно наблюдать то, что напряжение в розетках несколько отличается от положенных 220 В. Зависит это от разных причин и диапазон таких отклонений напряжения может колебаться от 170 – 380 В до нескольких тысяч В.

Не трудно догадаться, что такие перепады напряжения часто становятся причиной выхода из строя бытовой техники. Понятно, что пониженное напряжение может привести к не корректной работе электрооборудования, а повышенное к выходу его из строя, особенно это касается таких устройств как компьютеры, телевизоры, плазменные панели, холодильники и т.п.

Перенапряжением называется такое значение установившегося напряжения, которое превышает значение предельно допустимого напряжения.

Государственным стандартом качества электрической энергии установлены нормы отклонения напряжения в точке подключения потребителей электрической энергии. Существует понятие допустимое и предельно допустимое значение напряжения. Эти значения равны соответственно ±5 и ±10 % от номинального значения напряжения и в точках общего присоединения потребителей.

То есть нормальным считается напряжение:

  • — для однофазной сети в диапазоне 198 – 242 В;
  • — для трехфазной сети 342 – 418 В.

Причины возникновения перенапряжения

1) Самой распространенной причиной перенапряжения для бытовых потребителей является обрыв нулевого провода (N).

Нулевой провод при несимметричных нагрузках выравнивает фазные напряжения у потребителя электроэнергии. При обрыве или отгорании нулевого провода ток будет циркулировать между фазами. Часть потребителей получит повышенное напряжение, вплоть до 380 В, а часть заниженное.

2) Неправильное или ошибочное подключение в электрощитовой, когда вместо нулевого провода вы подключаете фазный, при этом в дом приходит не 220 В, а 380 В.

3) Во время грозовых разрядов, удар молнии в линию электропередачи, возникают импульсные перенапряжения которые по величине могут достигать нескольких тыс. В.

4) Регулирования напряжения на подстанциях энергосистем.

— применение стабилизаторов напряжения предохраняет вашу сеть от перепадов напряжения, делая эксплуатацию электротехники безопасной. Большинство таких приборов имеют дисплей, на котором отображается напряжение сети, график скачков напряжения и т.п.

Стабилизаторы оснащены функцией контроля напряжения, если значение напряжения сети выходит за диапазон контроля стабилизатора, например ниже 150 В или выше 260 В, то стабилизатор блокируется и отключает от сети потребителя. Как только напряжение сети возобновляется до допустимых значений, стабилизатор снова включается .

реле напряжения защищает и отключает бытовую технику при возникновении недопустимых перепадов напряжения и автоматически включает потребителей после восстановления его допустимых значений.

Реле напряжения широко используется для защиты от перенапряжения бытовых электроприборов. Целесообразно использовать реле напряжения в квартирах так как в таких сетях не редко возникают опасные перенапряжения из за обрыва нулевого провода.

Реле напряжения по своей структуре могут использоваться для защиты как одного конкретного потребителя, так и для защиты всего дома или квартиры.

При защите одного или группы потребителей, реле напряжения подключается по схеме приемник – реле — розетка, то есть прибор подключается к реле, затем само реле включается в розетку.

Для защиты от перенапряжения всего дома или квартиры, реле напряжения устанавливается на DIN-рейку в распределительном щитке.

— комбинированное использование датчика повышенного напряжения (ДПН) и УЗО такой способ борьбы с перенапряжением получил широкое распространение благодаря незначительной цене.

Принцип работы весьма прост: ДПН контролирует наличие напряжения сети, УЗО отключает сеть при возникновении перенапряжения.

Устройства защиты от перенапряжения в сети

Защита от перенапряжения в сети – очень важное мероприятие, которое позволит не только продлить срок службы электропроводки, но и повысит безопасность при скачках напряжения. Если не защитить линию от перенапряжения.

то можно не только вывести из строя всю бытовую технику, но и подвергнуть свое жилье пожару, не говоря уже о собственном здоровье.

Далее мы рассмотрим основные причины возникновения перенапряжения, а также устройства, которые позволят уберечь электропроводку от губительных последствий данного явления.

Основные причины возникновения

Чаще всего перенапряжение в сети 220 и 380 Вольт возникает по следующим причинам:

  1. Обрыв нулевого провода (на схеме обозначается как N, синего цвета). Предназначение нуля – выровнять ток в фазах и, соответственно, при его обрыве происходит резкий сбой, при котором одни потребители получают меньше необходимых 220 В, а часть больше, вплоть до 380 В. Если в первой случае техника будет просто некорректно работать, то во втором она попросту выйдет из строя, если не установлены устройства защиты.
  2. Невнимательность при подсоединении контактов в щите, в результате чего по жилам пойдет перенапряжение — не 220, а 380 В.
  3. Возникло импульсное напряжение вследствие попадания грозы в ЛЭП (именно поэтому рекомендуют отключать всю бытовую технику во время грозы, а также делать молниезащиту на участке ).
  4. Питание от одной линии с мощным заводом, который в определенный момент может запустить все свое оборудование, создав огромный скачок тока в сети. Происходит редко, но все же отдельные случаи наблюдались.

Наглядный видео пример действия перенапряжения

Как Вы видите, на перегрузку в однофазной и трехфазной сети влияет множество факторов, в том числе и природные. Поэтому домашнюю проводку нужно обязательно защитить, чтобы не стать жертвой несчастного случая.

Устройства для решения проблемы

В современном мире существует множество различных устройств для защиты от перенапряжения в сети, которые несложно подключить своими руками. Изделия могут эффективно справляться не только с перепадами напряжения, но и со сверхтоками, которые также губительно влияют на домашнюю проводку.

Среди наиболее полезных для применения в доме и квартире выделяют:

  1. Стабилизатор. Является своего рода предохранителем, который контролирует напряжение в сети и в случае его предельно допустимого отклонения, отключает электричество в доме. К примеру, на своем опыте могут сказать, что стабилизатор не раз спасал нашу бытовую технику от перепадов, вызванных сварочными работами, проходящими вблизи. Устройства имеют диапазон от 150 В и до 240 В (как пример). Как только значение выйдет из данного диапазона, аппарат выключится. В то же время, когда все стабилизируется, устройство защиты снова включится. О том, как подключить стабилизатор напряжения. мы рассказывали в соответствующей статье!
  2. Реле. Вы наверняка не раз сталкивались с данными устройствами, которые являются миниатюрной версией стабилизатора. Чаще всего реле напряжения используется для защиты от перенапряжения одного определенного агрегата, к примеру, компьютера. Работает по такой же схеме, как и предыдущий вариант. Может быть представлен в виде электрической вилки (к примеру, ЗУБР), удлинителя и отдельного аппарата (всем известный Барьер), которое крепится на DIN-рейку щита. О том, как выбрать реле напряжения мы рассказывали в отдельной статье.
  3. Устройство защитного отключения. Широко применяется для защиты сети в домашних условиях, что вызвано высоким качеством работы и небольшой стоимостью. УЗО должно работать в паре со специальным датчиком ДПН, который будет подавать сигнал на отключение, если обнаружит перенапряжение в сети. Вместо этого можно использовать альтернативный вариант для защиты дома — устройство защиты многофункциональное. О том, как работает УЗМ-51М и как его подключить, мы рассказали в отдельной статье.
  4. Источник бесперебойного питания. Опять-таки, на своем опыте подтвержу его эффективность. Более десяти раз ИБП спасал мой компьютер от резкого выключения при срабатывании стабилизатора. «Бесперебойник» имеет небольшую стоимость, поэтому купить такой вариант защиты от перенапряжения при наличии ПК крайне необходимо.
  5. УЗИП. От импульсных напряжений (возникают во время грозы и могут вывести технику из строя) можно защититься, установив в доме УЗИП. Данный аппарат является достаточно популярным на сегодняшний день и широко применяется как в быту, так и на производстве. Более подробно о том, что такое УЗИП и как он работает, мы рассказали в отдельной статье, с которой настоятельно рекомендуем ознакомиться. Следует отметить, что УЗИП могут также называть модульными ограничителями перенапряжения (ОПН).

Купив все эти устройства для защиты от перенапряжения в сети 220 и 380 Вольт можно не беспокоиться о том, что пострадает бытовая техника, электропроводка и главное – Ваша жизнь в опасной ситуации.

Видео пример срабатывания ДПН и УЗО

Защита электрических сетей от перенапряжения

Перенапряжение – это превышение предельно допустимого уровня напряжения в сети на 10 и более процентов.

В зависимости от типа сети допустимые по нормативам значения варьируются в диапазоне:

  • однофазная электросеть – от 198 до 242 вольт;
  • трехфазная электросеть – от 342 до 418 вольт.

Если напряжения превышает данные показатели, то речь уже идет о перенапряжении сети и нужно принимать защитные меры.

Опасность перенапряжения

Опасность перенапряжение состоит в том, что оно может вызвать в сбои в работе электрического оборудования и привести к частичной или полной его поломке. Оно может стать причиной сгорания холодильников, стиральных машин, телевизоров, компьютеров и других бытовых приборов.

Стоит отметить, что поломка бытовой техники – это не самое страшное последствие перенапряжения. Оно может стать причиной возгорания помещения и человеческих смертей, поэтому важно использовать средства защиты и обезопасить домашнюю электросеть.

Причины возникновения перенапряжения

Наиболее распространенная причина перенапряжения – это отгорание или обрыв нулевого провода, что приводит к тому, что ток циркулирует между фазами и часть потребителей получает пониженное напряжение, а часть – повышенное.

Также часто причиной перенапряжения становится ошибка при подключении кабеля в распределительном щитке – нулевой провод включается на место фазного и в квартиру вместо положенных 220 вольт поступает 380.

Значительную опасность для сети представляет разряд молнии в линии электропередач. В результате ударе возникает импульсное перенапряжение, достигающее нескольких тысяч вольт. Бывают случаи перенапряжения из-за сбоев на электрических подстанциях.

Способы защиты от перенапряжения

Для защиты от повышенного напряжения используются следующие устройства:

Остановимся на каждом устройстве подробнее.

Стабилизаторы напряжения

Стабилизаторы обеспечивают надежную защиту сети от перенапряжения. Если напряжение выходит за предельно допустимый диапазон, то стабилизатор отключает подключенную группу от сети. Когда напряжения нормализируется, то регулятор включает питание снова. Современные стабилизаторы комплектуются дисплеями, отображающими текущее напряжение и показывающими график его скачков.

В продаже можно встретить различные типы этих устройств:

Существуют различные схемы монтажа регуляторов. Оптимальный вариант – это установка устройства на каждый электроприбор, который необходимо защитить.

Эта схема хороша тем, что для каждого потребителя можно подобрать подходящий по точности и мощности стабилизатор.

Конечно, этот вариант и самый дорогой, поэтому чаще всего один стабилизатор устанавливается на группу или на всю квартиру. Его мощность рассчитывается путем суммирования мощности всех приборов.

Реле напряжения

Установка реле – это тоже довольно эффективный способ обезопасить домашнюю сеть. При больших перепадах напряжения, реле автоматически отключает потребителя, а при стабилизации – включает. Современные защитные реле выпускаются с микропроцессорами, которые позволяют проводить более тонкую настройку устройства.

Реле, как и стабилизаторы, можно устанавливать на отдельные приборы, на группы и на всю домашнюю сеть. При защите отдельного прибора, он подключается к реле, а оно уже к сети питания. При защите всего дома или группы приборов, реле устанавливается на распределительном щитке.

Датчик повышенного напряжения (ДПН) + устройство защитного отключения (УЗО)

ДНП – это датчик повышенного напряжения, а УЗО – устройство защитного отключения. ДНП проводит мониторинг работы сети и если значения напряжения превышают норму, то УЗО размыкает сеть.

Устройство защиты от импульсных перенапряжений (УЗИП)

УЗИП – это устройство защиты от импульсных напряжений. УЗИП применяется для защиты сети от импульсного перенапряжения, в особенности, от попадания молнии в ЛЭП. Устройство можно устанавливать, как на часть, так и на всю сеть.

В последнем случае УЗИП устанавливается возле каждого электрического потребителя и на вводе в электрический щит.

Источники: http://electricvdome.ru/zachita-ot-perenaprjazhenija/zachita-ot-perenaprjazhenija-v-seti.html, http://samelectrik.ru/ustrojstva-zashhity-ot-perenapryazheniya-v-seti.html, http://electrikagid.ru/electrobezopastnost/zashhita-ot-perenapryazhenie-v-seti.html

Источник: http://electricremont.ru/zashhita-ot-perenapryazheniya.html

Защита от перенапряжений

Всегда есть вероятность того, что электрическая система может пострадать от ненормальных режимов, а именно от перенапряжений, в связи с чем нужно выполнять требования к релейной защите.

Читайте также:  Применение электрических сетей с изолированной нейтралью

Этот ненормальный режим может быть вызван различными факторами, такими как: внезапное отключение тяжелой нагрузки от системы, импульсом от разряда молнии, переходными процессами от коммутации оборудования. Эти перенапряжения могут привести к повреждению изоляции различных устройств и изоляторов энергосистемы.

Несмотря на то, что все изоляторы энергосистемы рассчитаны на такие перенапряжения и само перенапряжение не может привести к выходу из стоя изоляторов в энергосистеме, но все же эти перенапряжения нужно избегать для обеспечения качественного электроснабжения потребителей.

Все типы перенапряжений устраняются с помощью защиты от перенапряжений.

Импульсное перенапряжение

Перенапряжения наводящиеся в энергосистеме в основном имеют временный характер. Временное перенапряжение или импульсное перенапряжение определяется как внезапное изменение напряжения к величине превышающей нормальную за очень короткий промежуток времени.

Импульсное перенапряжение является временным по своей природе, это означает что оно происходит за очень короткий срок и сразу исчезает. Основная причина этих импульсных перенапряжений в энергосистеме являются импульсы от молнии и импульсы от коммутации оборудования в системе.

Но перенапряжения могут быть вызваны повреждением изоляции, замыканием на землю в системах с изолированной нейтралью, резонансом и т.д.

Импульсные перенапряжения происходящие в электрической системе в связи с коммутацией оборудования, повреждения изоляции, замыкания ни землю с изолированной нейтралью, или резонансом не очень большие по абсолютному значению.

Эти перенапряжения едва достигают двойного значения от нормального напряжения в системе. Обычно, правильная изоляция всего оборудования энергосистемы достаточная мера для предотвращения аварий в связи с этими перенапряжениями.

Но перенапряжения происходящие в следствии удара молнии являются очень большими. Если защита от перенапряжений не предусмотрена в энергосистеме существует большая вероятность серьезного повреждения.

Следовательно, все защиты от перенапряжений использующиеся в энергосистемах должны защищать от перенапряжения в следствии скачков напряжения из-за молнии.

Давайте рассмотрим  различные причины возникновения перенапряжения.

Импульс — следствие перенапряжения от коммутации или коммутационное перенапряжение

Если не нагруженная линия включается внезапно, напряжение на линии в момент времени становится до двух раз выше от нормального. Это напряжение называется переходным. Когда нагруженная линия внезапно отключилась или оборвалась напряжение в линии так же становится достаточно высоким.

Во время пробоя изоляции проводник внезапно заземляется. Это так же может быть причиной повышения напряжения в системе. Если ЭДС волна произведённая генератором искажена, проблема резонанса может произойти из-за 5-й или более высоких гармоник.

На самом деле для частот 5ой  или более высоких гармоник возникает критическая ситуация в системе, происходит то, что индуктивное сопротивление системы становится равно емкостному сопротивлению системы. Поскольку эти сопротивления компенсируют друг друга, система становится чисто резистивной.

Это явление называется резонанс и при резонансе напряжение в системе может быть увеличено.

Но все вышеупомянутые причины создают перенапряжения в системе, которые не очень высокие по величине.

Но перенапряжения происходящие в системе вызваны молнией очень высоки по амплитуде и могут быть очень разрушительны. Защита от перенапряжений должна предотвращать разрушающий эффект молнии.

В данном случае, необходим расчет падения напряжения для удовлетворения условия прохода тока по минимальному сопротивлению линии.

Ведь чем меньше сопротивление, тем больше шанс, что разряд уйдет именно в землю по защищающему устройству, к примеру молниезащите, а не через оборудование.

Методы защиты от импульсных перенапряжений

Существуют три основных метода для защиты от грзовых пренапряжений или молнии.  Это

  • Экранное заземление.
  • Заземляющий трос.
  • Разрядник или ограничители напряжения.

Экранное заземление

Экранное заземление обычно используется на электрических подстанциях. Это конструкция из сетки заземленых проводов смонтированных по всей подстанции.

Заземляющие провода, которые используются для экранного заземления, должны быть правильно через специальные заземляющие устройства расположенные на подстанции.

Эти заземляющие провода обеспечивают путь прохождения тока молнии с очень малым сопротивлением в землю.

Этот метод заземления от перенапряжения очень простой и экономичный но главным недостатком его является то, что эта систем не защищает оборудование подстанции от блуждающей волны перенапряжения которая приходит к подстанции через подводящиеся фидеры.

Заземляющий трос

Этот метод защиты от перенапряжений схож с экранным заземлением.

С одним только различием, а именно: экранное заземление размещено над подстанцией, в то время как заземляющий трос рассположен над линиями электропередач.

Заземляющий трос правильно заземлен на землю через опору электропередач. Этот заземляющий трос берет на себя все удары молнии и отводит в землю вместо того, чтобы молния била прямо в фазный провод.

Разрядник

Описанные с начала два метода, а именно заземляющий трос и экранное заземление подходят для защиты электрической системы от прямых поподаний молнии но они не защищают систему от блуждающей волны перенапряжения которая может распространятся через линию к оборудованию на подстанции. Рязрядник это устройство, которое обеспечивает очень низкое полное сопротивление на землю для блуждающей волны перенапряжения.

Конструкция разрядника очень простая. Это устройство ведет себя как нелинейное электрическое сопротивление. Сопротивление уменьшается по мере увеличения напряжения и наоборот увеличивается, после точно определенного уровня напряжения.

Функции разрядника или ограничителя перенапряжения описаны ниже:

  1. При нормальном уровне напряжения, эти устройства легко выдерживают напряжение системы и работают в качестве электрического изолятора и не обеспечивает проводящий путь к земле.
  2. При наступлении скачков напряжения в системе, эти устройства обеспечивают очень низкий путь сопротивления для избыточного заряда от перенапряжений на землю.
  3. После проведения разрядником перенапряжения, на землю, напряжение восстанавливается. Тогда разрядник восстанавливает свою изоляцию и не допускает дальнейшее проведение тока на землю.

Источник: http://elekt.com.ua/rza/relejnaja-zashhita/zashhita-ot-perenaprjazhenij.html

Что такое перенапряжение? Виды перенапряжений и их опасность

Здравствуйте, уважаемые гости и постоянные читатели сайта http://zametkielectrika.ru.

В своей статье про стабилизаторы напряжения для частного дома я затрагивал вопрос про основные показатели получаемой электрической энергии из сети, согласно ГОСТ 13109-97. Переходите по ссылке и знакомьтесь подробнее. Здесь лишь повторю, что к ним относятся отклонения напряжения, провалы напряжения и перенапряжения.

Для защиты электрооборудования от первых двух показателей я рекомендовал Вам устанавливать стабилизаторы напряжения. Вот наглядный пример о том, как правильно выбрать стабилизатор напряжения для своего дома.

А вот про защиту электрооборудования и электропроводки от перенапряжений я как то упустил из виду. Поэтому тема данной статьи будет посвящена видам перенапряжений и их опасностям.

Для начала давайте определимся, что же такое перенапряжение.

Вот так примерно это выглядит.

Например, напряжение однофазной сети у нас составляет 220 (В). Напоминаю Вам, что это действующее значение напряжения. Если перевести его в амплитудное, умножив действующее напряжение на √2, то получим 310 (В).

Так вот во время импульсных перенапряжений амплитудное значение напряжения может достигать значения до нескольких тысяч вольт.

Длительность таких импульсных перенапряжений не велика — всего несколько милисекунд (мсек).

Какую опасность несут в себе перенапряжения? Примеры

Изоляция электропроводки (кабелей и проводов) и различных электрических приборов может выдерживать определенный уровень напряжения. Вот примерная таблица электрической прочности изоляции некоторого электрооборудования.

По таблице видно, что изоляция у большинства проводников и приборов  может выдерживать до 1000 (В). Как я уже говорил выше, во время перенапряжений амплитудное значение напряжения достигает значений до нескольких тысяч вольт.

Это приведет к пробою изоляции, а следовательно, к выходу из строя электрических приборов, электропроводки и возникновению пожара.

Если электрический прибор будет выключен из розетки, то Вы его защитите от перенапряжений. А вот провода и кабельные линии электропроводки всегда находятся под напряжением (розетки, одноклавишные и двухклавишные выключатели) и совсем не защищены от импульсных перенапряжений.

Приведу наглядный пример, случившийся совсем недавно на даче моего знакомого.

При возникновении импульсного перенапряжения произошел пробой изоляции питающих проводов розетки, что привело к короткому замыканию.

Вот еще один пример пагубных последствий импульсных перенапряжений, который вывел из строя электронный однофазный счетчик электрической энергии «Энергомера» СЕ102.

Причины возникновения и виды импульсных перенапряжений

Всего существует 3 вида импульсных перенапряжений:

  • коммутационное
  • грозовое (его еще называют атмосферным)
  • электростатическое

1. Коммутационное перенапряжение

Коммутационные перенапряжения возникают при резком изменении установившегося режима работы электрической сети. Такое явление называют переходным процессом.

Импульсы и волны при данном виде перенапряжений имеют высокую частоту: от десятков до сотен (кГц), а их значение достигает до нескольких тысяч вольт и в большей степени зависит от параметров электрической цепи (индуктивность, емкость), быстродействия коммутационных аппаратов и фазы тока во время коммутации.

Причины возникновения коммутационных перенапряжений:

Например, при отключении от электрической сети небольшого трансформатора мощностью всего 1 (кВА) может возникнуть импульсное коммутационное перенапряжение порядка 2000 (В), т.е. вся запасенная энергия в обмотках трансформатора выбрасывается в электрическую сеть, что пагубно может сказаться на работу электрооборудования.

Представьте себе какое перенапряжение возникнет при коммутации силового трансформатора мощностью 400 (кВА)?

2. Атмосферное (грозовое) перенапряжение

Атмосферные (грозовые) перенапряжения относятся к природным явлениям, вызванные грозовыми разрядами.

По общей статистике 90% молний имеют ток разряда порядка 40-60 (кА). Чуть меньше 1% молний имеют ток разряда 100 (кА) и выше.

Существуют прямые попадания молний в электрическую сеть (воздушную линию) или в молниеприемник, и удаленные попадания молний на расстоянии до 1500 м, при котором возникают импульсные перенапряжения. Смотрите картинки ниже.

На картинках выше волна перенапряжения (импульс) подписана двумя надписями, либо 10/350, либо 8/20. Эти волны (импульсы) имеют определенную форму и длину волны.

Как видно по графику, импульс 10/350 наиболее опасен для защищаемого объекта, чем 8/20, т.к. он в десятки раз дольше воздействует на электрическую сеть.

Еще несколько слов хотел бы сказать про перераспределение энергии грозового разряда.

Принято считать, что 50% от первоначального импульса перенапряжения, при условии, что у нас в доме выполнена система молниезащиты и имеется заземляющее устройство (система TN-C-S, TN-S, ТТ), отводится в землю, а остальные 50% перераспределяются равномерно между всеми проводниками электрической сети, в том числе трубами и бытовыми коммуникациями.

3. Электростатическое перенапряжение

Еще один вид, который мы рассмотрим — это электростатическое перенапряжение. Чаще всего оно возникает в сухих средах путем скапливания электростатических зарядов, которые в свою очередь создают сильное электростатическое поле. Это очень не предсказуемый вид перенапряжений.

Например, если походить по ковру в диэлектрической обуви, то мы сможем зарядиться до нескольких тысяч вольт. При касании любой проводящей конструкции (батарея, корпус компьютера) произойдет электрический разряд длительностью несколько наносекунд (нсек). Наиболее опасен данный вид перенапряжений для электронных деталей и компонентов электрических приборов и устройств.

Как защитить свой дом от перенапряжений?

Ну вот мы подошли к самому главному вопросу, как же защитить электрические приборы и электропроводку своего дома или квартиры от вышеперечисленных импульсных перенапряжений.

Скажу сразу, что полностью избавиться от импульсных перенапряжений не получится. Наша цель — это лишь снизить значения импульсных перенапряжений до значений, не угрожающих нашему оборудованию.

Дело в том, что даже при правильном монтаже системы молниезащиты 50% мощности импульсного разряда уходит в землю, а остальные 50% перераспределяются по сетям электропроводки и бытовыми коммуникациями дома. Поэтому для осуществления полной защиты от перенапряжений необходимо выполнить:

  • повторное заземление PEN проводника на опоре ввода воздушной линии (ВЛ) в дом
  • повторное заземление крюков и кронштейнов всех опор воздушной линии
  • монтаж системы молниезащиты
  • отдельный контур заземления для молниезащиты, который нужно соединить с основным контуром дома
  • система уравнивания потенциалов (ОСУП, ДСУП)
  • ступенчатая защита с помощью специальных устройств УЗИП (устройство защиты от импульсных перенапряжений)

Более подробно о каждом способе защиты я расскажу Вам в отдельных статьях. Чтобы не пропустить выход новых статей, пройдите процедуру подписки.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

Источник: http://zametkielectrika.ru/perenapryazhenie/

Ссылка на основную публикацию