Электрические цепи с конденсаторами

Цепь переменного тока с конденсатором

При переменном напряжении на реальном конденсаторе кроме тока смещения имеются небольшие токи проводимости, через толщу диэлектрика (объемный ток) и по поверхности (поверхностный ток).Токи проводимости и поляризацию диэлектрика сопровождают потери энергии.

Таким образом, в реальном конденсаторе наряду с изменением энергии электрического поля (это характеризует реактивная мощность Q) из-за несовершенства диэлектрика идет необратимый процесс преобразования электрической энергии в тепло, скорость которого выражается активной мощностью Р. Поэтому в схеме замещения реальный конденсатор должен быть представлен активным и реактивным элементами.

Деление реального конденсатора на два элемента — это расчетный прием, так как конструктивно их выделить нельзя. Однако такую же схему замещения имеет реальная цепь из двух элементов, один из которых характеризуется только активной мощностью Р (Q = 0), другой — реактивной (емкостной) мощностью Q(P = 0).

Схема замещения конденсатора с параллельным соединением элементов

Реальный конденсатор (с потерями) можно представить эквивалентной схемой параллельного соединения активной G и емкостной Bс проводимостей (рис. 13.

15), причем активная проводимость определяется мощностью потерь в конденсаторе G = Р/Uc2, а емкость — конструкцией конденсатора.

 Предположим, что проводимости G и Вс для такой цепи известны, а напряжение имеет уравнение

u = Umsinωt.

Требуется определить токи в цепи и мощность.Исследование цепи с активным сопротивлением и цепи с емкостью показало, что при синусоидальном напряжении токи в них так же синусоидальны. При параллельном соединении ветвей G и Вс , согласно первому закону Кирхгофа, общий ток i равен сумме токов в ветвях с активной и емкостной проводимостями:

i = iG + ic,                                                      (13.30)

Учитывая, что ток iG совпадает по фазе с напряжением, а ток ic опережает напряжение на четверть периода, уравнение общего тока можно записать в следующем виде:

Векторная диаграмма токов в цепи с конденсатором

Для определения действующей величины общего тока I методом векторного сложения построим векторную диаграмму согласно уравнению

I = IG + IC

Действующие величины составляющих тока:

IG = GU                                                       (13.31)

IC = BCU                                                      (13.32)

Первым на векторной диаграмме изображается вектор напряжения U (рис. 13.16, а), его направление совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза напряжения φa =0).

Вектор IG совпадает по направлению с вектором U, а вектор IC направлен перпендикулярно вектору U с положительным углом.

Из векторной диаграммы видно, что вектор общего напряжения отстает от вектора общего тока на угол φ, величина которого больше нуля, но меньше 90º.

Вектор I является гипотенузой прямоугольного треугольника, катеты которого — составляющие его векторы IG и IC : При напряжении u = Umsinωt соответствии с векторной диаграммой уравнение тока

i = Imsin(ωt + φ)

Треугольник проводимостей для конденсатора

Стороны треугольников токов, выраженные в единицах тока, разделим на напряжение U. Получим подобный треугольник проводимостей (рис. 13.16, б), катетами которого являются активная G = IG/U и емкостная Вс = Iс/U проводимости, а гипотенузой — полная проводимость цепи Y = I/U. Из треугольника проводимостей

Связь между действующими величинами напряжения и тока выражается формулами

I = UY

U = I/Y                                                        (13.35)

Из треугольников токов и проводимостей определяют величины

cosφ = IG/I = G/Y;                sinφ = Ic/I = Bc/Y;              tgφ = IC/IG = Bc/G.               (13.36)

Мощность цепи с конденсатором

Выражение мгновенной мощности реального конденсатора

p = ui = Umsinωt * Imsin(ωt+φ)

совпадает с выражением мгновенной мощности катушки. Рассуждения, аналогичные тем, которые сделаны при рассмотрении графика мгновенной мощности катушки (см. рис.13. 11), можно провести и для реального конденсатора на основе графика рис. 13.17.

Величины активной, реактивной и полной мощностей выражаются теми же формулами, какие были получены для катушки [см. (13.19) — (13.22)]. Это нетрудно показать, если стороны треугольника токов, выраженные в единицах тока, умножить на напряжение U. В результате умножения получится подобный треугольник мощностей (рис. 13.

16, в), катетами которого являются мощности; активная

 P = UIG = UIcosφ

реактивная

Q = UIC = UIsinφ

полная

Схема замещения конденсатора с последовательным соединением элементов

Реальный конденсатор, так же как и катушка, на расчетной схеме может быть представлен последовательным соединением двух участков: с активным R и емкостным Хс сопротивлениями. На рис. 13.

18, а такая схема показана в сравнении со схемой параллельного соединения активной и емкостной проводимостей (рис.13. 18,6). Все выводы и формулы, полученные для катушки, остаются в силе и для конденсатора при условии замены индуктивного сопротивления емкостным.

Конденсаторы, применяемые на практике, имеют относительно малые потери энергии. Поэтому в схемах замещения они представлены чаще всего только реактивной частью, т. е.

емкостью С[BC = ωC, Xc = 1/(ωC)] Участки цепи, где последовательно соединены отдельные элементы — резистор R и конденсатор С, имеют такую схему замещения, как показано на рис. 13.18, а. Если вам интересно прочитайте статью о настоящих конденсаторах которые применяются в промышленности.

Источник: https://electrikam.com/cep-peremennogo-toka-s-kondensatorom/

Способы подключения конденсаторов в электрическую цепь

Схемы в электротехнике состоят из электрических элементов, в которых способы соединения конденсаторов могут быть разными. Надо понимать, как правильно подключить конденсатор. Отдельные участки цепи с подключенными конденсаторами можно заменить одним эквивалентным элементом.

Он заменит ряд конденсаторов, но должно выполняться обязательное условие: когда напряжение, подводимое к обкладкам эквивалентного конденсатора, равняется напряжению на входе и выходе группы заменяющихся конденсаторов, тогда заряд емкости будет такой же, как и на группе емкостей.

Для понимания вопроса, как подключить конденсатор в любой схеме, рассмотрим виды его включения.

Параллельное включение конденсаторов в цепь

Параллельное соединение конденсаторов — это когда все пластины подключаются к точкам включения цепи, образовывая батарею емкостей.

Параллельное соединение конденсаторов:

Параллельное соединение конденсаторов

Разность потенциалов на пластинах накопителей емкости будет одинаковая, так как они все заряжаются от одного источника тока. В этом случае каждый заряжающийся конденсатор имеет собственный заряд при одинаковой величине, подводимой к ним энергии.

Параллельные конденсаторы, общий параметр количества заряда полученной батареи накопителей, рассчитывается, как сумма всех зарядов, помещающихся на каждой емкости, потому что каждый заряд емкости не зависит от заряда другой емкости, входящей в группу конденсаторов, параллельно включенных в схему.

При параллельном соединении конденсаторов емкость равняется:

Формула и расшифровка

Из представленной формулы можно сделать вывод, что всю группу накопителей можно рассматривать как один равноценный им конденсатор.

Конденсаторы, соединенные параллельно, имеют напряжение:

Формула

Последовательное включение конденсаторов в цепь

Когда в схеме выполнено последовательное соединение конденсаторов, оно выглядит как цепочка емкостных накопителей, где пластина первого и последнего накопителя емкости (конденсатора) подключены к источнику тока.

Последовательное соединение конденсатора:

Формула

При последовательном соединении конденсаторов все устройства этого участка берут одинаковое количество электроэнергии, потому что в процессе участвует первая и последняя пластинка накопителей, а пластины 2, 3 и другие до N проходят зарядку посредством влияния.

По этой причине заряд пластины 2 накопителя емкости равняется по значению заряду 1 пластины, но имеет обратный знак. Заряд пластины накопителя 3 равняется значению заряда пластины 2, но так же с обратным знаком, все последующие накопители имеет аналогичную систему заряда.

Формула нахождения заряда на конденсаторе, схема подключения конденсатора:

Последовательное соединение конденсаторов

Когда выполняется последовательное соединение конденсаторов, напряжение на каждом накопители емкости будет различное, так как в зарядке одинаковым количеством электрической энергии участвуют разные емкости.

Зависимость емкости от напряжения такова: чем она меньше, тем большее напряжение необходимо подать на пластины накопителя для его зарядки. И обратная величина: чем выше емкость накопителя, тем меньше требуется напряжения для его зарядки.

Можно сделать вывод, что емкость последовательно соединенных накопителей имеет значение для величины напряжения на пластинах — чем она меньше, тем больше напряжения требуется, а также накопители большой емкости требуют меньшего напряжения.

Основное отличие схемы последовательного соединения накопителей емкости в том, что электроэнергия протекает только в одном направлении, а это означает, что в каждом накопителе емкости составленной батареи ток будет одинаковым. В этом виде соединений конденсаторов обеспечивается равномерное накопление энергии независимо от емкости накопителей.

Группу накопителей емкости можно также на схеме рассматривать как эквивалентный накопитель, на пластины которого подается напряжение, определяемое формулой:

Основные моменты

Заряд общего (эквивалентного) накопителя группы емкостных накопителей последовательного соединения равен:

Формула

Общему значению емкости последовательно соединенных конденсаторов соответствует выражение:

Формула

Смешанное включение емкостных накопителей в схему

Параллельное и последовательное соединение конденсаторов на одном из участков цепи схемы называется специалистами смешанным соединением.

Участок цепи подсоединенных смешанным включением накопителей емкости:

Схема подключения конденсаторов

Смешанное соединение конденсаторов в схеме рассчитывается в определенном порядке, который можно представить следующим образом:

  • разбивается схема на простые для вычисления участки, это последовательное и параллельное соединение конденсаторов;
  • вычисляем эквивалентную емкость для группы конденсаторов, последовательно включенных на участке параллельного соединения;
  • проводим нахождение эквивалентной емкости на параллельном участке;
  • когда эквивалентные емкости накопителей определены, схему рекомендуется перерисовать;
  • рассчитывается емкость получившейся после последовательного включения эквивалентных накопителей электрической энергии.

Последовательное, параллельное и смешанное соединение конденсаторов

Накопители емкостей (двухполюсники) включены разными способами в цепь, это дает несколько преимуществ в решении электротехнических задач по сравнению с традиционными способами включения конденсаторов:

  1. Использование для подключения электрических двигателей и другого оборудования в цехах, в радиотехнических устройствах.
  2. Упрощение вычисления величин электросхемы. Монтаж выполняется отдельными участками.
  3. Технические свойства всех элементов не меняются, когда изменяется сила тока и магнитное поле, это применяется для включения разных накопителей. Характеризуется постоянной величиной емкости и напряжения, а заряд пропорционален потенциалу.

Вывод

Разного вида включения конденсаторов в цепь применяются для решения электротехнических задач, в частности, для получения полярных накопителей из нескольких неполярных двухполюсников.

В этом случае решением будет соединение группы однополюсных накопителей емкости по встречно-параллельному способу (треугольником). В этой схеме минус соединяется с минусом, а плюс — с плюсом.

Читайте также:  Трансформаторы с сухой изоляцией

Происходит увеличение емкости накопителя, и меняется работа двухполюсника.

Не отображаются имеющиеся вхождения: последовательное параллельное и смешанное соединение конденсаторов, последовательное и параллельное соединение конденсаторов, при параллельном соединении конденсаторов емкость.

Источник: https://domelectrik.ru/baza/komponenty/soedinenie-kondensatorov

Конденсатор в цепи переменного тока — Основы электроники

Мы знаем, что конденсатор не пропускает через себя постоянного тока. Поэтому в электрической цепи, в которой последовательно с источником тока включен конденсатор, постоянный ток протекать не может.

Совершенно иначе ведет себя конденсатор в цепи переменного тока (Рис 1,а).

Рисунок 1. Сравнение конденсатора в цепи переменного тока с пружиной, на которую воздействует внешняя сила.

В течение первой четверти периода, когда переменная ЭДС нарастает, конденсатор заряжается, и поэтому по цепи проходит зарядный электрический ток i, сила которого будет наибольшей вначале, когда конденсатор не заряжен.

По мере приближения заряда к концу сила зарядного тока будет уменьшаться. Заряд конденсатора заканчивается и зарядный ток прекращается в тот момент, когда переменная ЭДС пе-рестает нарастать, достигнув своего амплитудного значения.

Этот момент соответствует концу первой четверти периода.

После этого переменная ЭДС начинает убывать, одновременно с чем конденсатор начинает разряжаться. Следовательно, в течение второй четверти периода по цепи будет протекать разрядный ток. Так как убывание ЭДС происходит вначале медленно, а затем все быстрее и быстрее, то и сила разрядного тока, имея в начале второй четверти периода небольшую величину, будет постепенно возрастать.

Итак, к концу второй четверти периода конденсатор разрядится, ЭДС будет равна нулю, а ток в цепи достигнет наибольшего, амплитудного, значения.

С началом третьей четверти периода ЭДС, переменив свое направление, начнет опять возрастать, а конденсатор — снова заряжаться.

Заряд конденсатора будет происходить теперь в обратном направлении, соответственно изменившемуся направлению ЭДС.

Поэтому направление зарядного тока в течение третьей четверти периода будет совпадать с направлением разрядного тока во второй четверти, т. е. при переходе от второй четверти периода к третьей ток в цепи не изменит своего направления.

Вначале, пока конденсатор не заряжен, сила зарядного тока имеет наибольшее значение. По мере увеличения заряда конденсатора сила зарядного тока будет убывать. Заряд конденсатора закончится и зарядный ток прекратится в конце третьей четверти периода, когда ЭДС достигнет своего амплитудного значения и нарастание ее прекратится.

Итак, к концу третьей четверти периода конденсатор окажется опять заряженным, но уже в обратном направлении, т. е. на той пластине, где был прежде плюс, будет минус, а где был минус, будет плюс. При этом ЭДС достигнет амплитудного значения (противоположного направления), а ток в цепи будет равен нулю.

В течение последней четверти периода ЭДС начинает опять убывать, а конденсатор разряжаться; при этом в цепи появляется постепенно увеличивающийся разрядный ток. Направление этого тока совпадает с направлением тока в первой четверти периода и противоположно направлению тока во второй и третьей четвертях.

Из всего изложенного выше следует, что по цепи с конденсатором проходит переменный ток и что сила этого тока зависит от величины емкости конденсатора и от частоты тока. Кроме того, из рис. 1,а, который мы построили на основании наших рассуждений, видно, что в чисто емкостной цепи фаза переменного тока опережает фазу напряжения на 90°.

Отметим, что в цепи с индуктивностью ток отставал от напряжения, а в цепи с емкостью ток опережает напряжение. И в том и в другом случае между фазами тока и напряжения имеется сдвиг, но знаки этих сдвигов противоположны

 

Емкостное сопротивление конденсатора

Мы уже заметили, что ток в цепи с конденсатором может протекать лишь при изменении приложенного к ней напряжения, причем сила тока, протекающего по цепи при заряде и разряде конденсатора, будет тем больше, чем больше емкость конденсатора и чем быстрее происходят изменения ЭДС

Конденсатор, включенный в цепь переменного тока, влияет на силу протекающего по цепи тока, т. е. ведет себя как сопротивление. Величина емкостного сопротивления тем меньше, чем больше емкость и чем выше частота переменного тока. И наоборот, сопротивление конденсатора переменному току увеличивается с уменьшением его емкости и понижением частоты.

Рисунок 2. Зависимость емкостного сопротивления конденсатра от частоты.

Для постоянного тока, т. е. когда частота его равна нулю, сопротивление емкости бесконечно велико; поэтому постоянный ток по цепи с емкостью проходить не может.

Величина емкостного сопротивления определяется по следующей формуле:

где Хс — емкостное сопротивление конденсатора в ом;

f—частота переменного тока в гц;

ω — угловая частота переменного тока;

С — емкость конденсатора в ф.

При включении конденсатора в цепь переменного тока, в последнем, как и в индуктивности, не затрачивается мощность, так как фазы тока и напряжения сдвинуты друг относительно друга на 90°.

Энергия в течение одной четверти периода— при заряде конденсатора — запасается в электрическом поле конденсатора, а в течение другой четверти периода — при разряде конденсатора — отдается обратно в цепь.

Поэтому емкостное сопротивление, как и индуктивное, является реактивным или безваттным.

Нужно, однако, отметить, что практически в каждом конденсаторе при прохождении через него переменного тока затрачивается большая или меньшая активная мощность, обусловленная происходящими изменениями состояния диэлектрика конденсатора.

Кроме того, абсолютно совершенной изоляции между пластинами конденсатора никогда не бывает; утечка в изоляции между пластинами приводит к тому, что параллельно конденсатору как бы оказывается включенным некоторое активное сопротивление, по которому течет ток и в котором, следовательно, затрачивается некоторая мощность.

И в первом и во втором случае мощность затрачивается совершенно бесполезно на нагревание диэлектрика, поэтому се называют мощностью потерь.

Потери, обусловленные изменениями состояния диэлектрика, называются диэлектрическими, а потери, обусловленные несовершенством изоляции между пластинами, — потерями утечки.

Ранее мы сравнивали электрическую емкость с вместимостью герметически (наглухо) закрытого сосуда или с площадью дна открытого сосуда, имеющего вертикальные стенки.

Конденсатор в цепи переменного тока целесообразно сравнивать с гиб-костью пружины. При этом во избежание возможных недоразумений условимся под гибкостью понимать не упругость («твердость») пружины, а величину, ей обратную, т. е. «мягкость» или «податливость» пружины.

Представим себе, что мы периодически сжимаем и растягиваем спиральную пружину, прикрепленную одним концом наглухо к стене. Время, в течение которого мы будем производить полный цикл сжатия и растяжения пружины, будет соответствовать периоду переменного тока.

Таким образом, мы в течение первой четверти периода будем сжимать пружину, в течение второй четверти периода отпускать ее, в течение третьей четверти периода растягивать и в течение четвертой четверти снова отпускать.

Кроме того, условимся, что наши усилия в течение периода будут неравномерными, а именно: они будут нарастать от нуля до максимума в течение первой и третьей четвертей периода и уменьшаться от максимума до нуля в течение второй и четвертой четвертей.

Сжимая и растягивая пружину таким образом, мы заметим, что в начале первой четверти периода незакрепленный конец пружины будет двигаться довольно быстро при сравнительно малых усилиях с нашей стороны.

В конце первой четверти периода (когда пружина сожмется), наоборот, несмотря на возросшие усилия, незакрепленный конец пружины будет двигаться очень медленно.

В продолжение второй четверти периода, когда мы будем постепенно ослаблять давление на пружину, ее незакрепленный конец будет двигаться по направлению от стены к нам, хотя наши задерживающие усилия направлены по направлению к стене.

При этом наши усилия в начале второй четверти периода будут наибольшими, а скорость движения незакрепленного конца пружины наименьшей.

В конце же второй четверти периода, когда наши усилия будут наименьшими, скорость движения пружины будет наибольшей и т. д.

Продолжив аналогичные рассуждения для второй половины периода (для третьей и четвертой четвертей) и построив графики (рис.

1,б) изменения наших усилий и скорости движения незакрепленного конца пружины, мы убедимся, что эти графики в точности соответствуют графикам ЭДС и тока в емкостной цепи (рис 1,а), причем график усилий будет соответствовать графику ЭДС , а график скорости — графику силы тока.

Рисунок 3. а)Процессы в цепи переменного тока с конденсатором и б)сравнение конденсатора с пружиной.

Нетрудно, заметить, что пружина, так же как и конденсатор, в течение одной четверти периода накапливает энергию, а в течение другой четверти периода отдает ее обратно.

Вполне очевидно также, что чем меньше гибкость пружины,- т е. чем она более упруга, тем большее противодействие она будет оказывать нашим усилиям. Точно так же и в электрической цепи: чем меньше емкость, тем больше будет сопротивление цепи при данной частоте.

И наконец, чем медленнее мы будем сжимать и растягивать пружину, тем меньше будет скорость движения ее незакрепленного конца. Аналогично этому, чем меньше частота, тем меньше сила тока при данной ЭДС.

При постоянном давлении пружина только сожмется и на этом прекратит свое движение, так же как при постоянной ЭДС конденсатор только зарядится и на этом прекратится дальнейшее движение электронов в цепи.

А теперь как ведет себя конденсатор в цепи переменного тока вы можете посмотреть в следующем видео:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник: http://www.sxemotehnika.ru/kondensator-v-tcepi-peremennogo-toka-emkostnoe-soprotivlenie.html

Пассивные элементы электрических цепей

К пассивным элементам электрических цепей относятся резисторы (R), катушки индуктивности (L) и конденсаторы (С). Они являются линейными элементами, если их сопротивление, индуктивность и ёмкость остаются постоянным при любом напряжении и токе.

Частотные характеристики пассивных элементов электрических цепей – это зависимость их сопротивления и фазового сдвига (φ) между напряжением и током от частоты (f).

Реальные пассивные элементы электрических цепей обладают как сопротивлением R, так и индуктивностью L, и емкостью C. Однако во многих случаях некоторыми характеристиками элемента можно пренебречь из-за их незначительности по сравнению с более значимым.

То есть у резистора можно пренебречь индуктивностью и ёмкостью, у катушки индуктивности можно пренебречь сопротивлением и ёмкостью, а у конденсатора можно пренебречь сопротивлением и индуктивностью.

Такие элементы электрических цепей называются идеальными, и они используются как для представления реальных элементов, так и для составления схем их замещения в расчётных схемах. В дальнейшем рассмотрим идеальные пассивные элементы электрических цепей.

Читайте также:  Самовосстанавливающиеся предохранители

Резистор

Резистор – это элемент электрической цепи, преобразующий электрическую энергию в другие виды энергии (тепловую, механическую, световую, химическую). Из определения видно, что резистором на схеме электрической цепи можно обозначать любой элемент, потребляющий активную энергию, мощность которой может быть рассчитана по формулам:

где R – сопротивление резистора, измеряемое в Омах, R = const (для линейных резисторов);

Uдействующее значение приложенного к резистору напряжения (В);

Iпротекающий по резистору ток (А).

      Математическая модель резистора

uR=Ri

В линейных электрических цепях принято (с определённым допущением), что сопротивление резистора не зависит от частоты R(f) = const, и он не создаёт сдвига по фазе между напряжением и током φR(f) = 0. Поэтому его частотные характеристики R(f) и φR(f)  имеют вид (рис.1).

В связи с отсутствием сдвига фаз на переменном токе векторы напряжения и тока резистора на комплексной плоскости всегда совпадают по фазе (рис.2).

Катушка индуктивности

Идеальная катушка индуктивности – это  элемент электрической цепи, запасающий электрическую энергию в магнитном поле, которую может полностью возвратить в последующем. Поэтому идеальная катушка индуктивности активную энергию не потребляет, и её активная мощность равна нулю

(P = 0 —  для идеальной катушки).

Математическая модель идеальной катушки индуктивности отражает то, что приложенное к ней напряжение uLуравновешивается ЭДС самоиндукции e.

где Lиндуктивность катушки, измеряемая в Генри (Гн).

    На переменном токе катушка обладает индуктивным сопротивлением

XL= ωL = 2πfL     (Ом),

которое может быть определено через действующее значение напряжения на катушке и действующее значение протекающего по ней тока по формуле:

XL= constдля линейных катушек индуктивности.

   В соответствии с формулой сопротивления идеальной катушки индуктивности видно, что оно пропорционально частоте f.

В то же время сдвиг по фазе между напряжением и током идеальной катушки индуктивности равен π/2.

    Частотные характеристики идеальной катушки индуктивности XL(f) представлены на рис.4.

В комплексной форме сопротивление идеальной катушки индуктивности чисто мнимое.

ZL= jXL= jωL = j2πfL,

и закон Ома для идеальной катушки индуктивности в комплексной форме имеет вид

L= ZLỈ= jXLỈ= jωLỈ = j2πfL.

Векторная диаграмма, соответствующая этой формуле, представлена на рис.5.

Из неё видно, что напряжение на идеальной катушке индуктивности опережает ток на π/2.

Однако реальная катушка индуктивности намотана проводом, обладающим активным сопротивлением Rk. Поэтому реальная катушка индуктивности потребляет активную энергию, и её активная мощность определяется формулой.

PK= RkI2    Вт.

В то же время максимальный запас энергии в магнитном поле катушки индуктивности характеризуется её реактивной мощностью Q, измеряемой в ВАр.

  Q=XLI2   ВАр.

Конденсатор

Конденсатор – это элемент электрической цепи, запасающий электрическую энергию в электрическом поле, которую может полностью возвратить в последующем. Поэтому конденсатор активную энергию не потребляет, и его активная мощность равна нулю (P = 0).

Математическая модель конденсатора

где С – ёмкость конденсатора, измеряемая в Фарадах (Ф) или в микрофарадах(1 мкФ = 10 -6 Ф).

На переменном токе конденсатор обладает ёмкостным сопротивлением.

которое может быть определено через действующее напряжение на конденсаторе и протекающий через его действующий ток по формуле:

XC= constдля линейных катушек индуктивности.

В соответствии с формулой сопротивления конденсатора видно, что оно обратнопропорционально частоте f.

В то же время сдвиг по фазе между напряжением и током конденсатора равен π/2.                                                           

   Частотные характеристики конденсатора XC(f) и φC(fпредставлены на  рис. 8.

В комплексной форме сопротивление конденсатора чисто мнимое.

Закон Ома для конденсатора в комплексной форме имеет вид

Векторная диаграмма, соответствующая этой формуле, представлена на рис.9.

Из неё видно, что ток конденсатора опережает напряжение на π/2.

Возможно Вам будут полезны следующие статьи по теме:

Источник: http://elekt.com.ua/toe/elektricheskie-tsepi-sinusoidalnogo-toka/pasyvnye-elementy.html

Конденсатор в электрической цепи

Конденсаторы наравне с резисторами относят к наиболее многочисленным элементам радиотехнических устройств. Они состоят из двух обкладок, изолированных со всех сторон. Основной функцией конденсатора является сохранение внутри себя заряда при кратковременной подаче на него постоянного напряжения.

Замечание 1

Существуют различные виды конденсаторов. Их различают по емкости, а она рассчитывается исходя из вместительности обкладок и расстояния между ними.

На одной обкладке сохраняются положительно заряженные частицы, а на второй – отрицательно заряженные. При взаимодействии обкладок возникает притяжение. Это не позволяет терять энергию заряженному конденсатору.

Для разрядки конденсатора в электрической цепи необходимо замкнуть два выхода от обкладок. Процесс осуществляется при помощи хорошего проводника. Конденсаторы с большой емкостью лучше разряжаются резисторами, то есть через сопротивление.

Конденсатор и цепь постоянного тока

Существует два вида электрического тока:

  • постоянный ток;
  • переменный ток.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Конденсаторы ведут себя по-разному в условиях электрической цепи. Постоянный ток через конденсатор не будет течь. Однако опытным путем установлено, что в первые доли секунды после подачи напряжения ток начинает течь. Незначительными показателями обычно пренебрегают при расчетах.

Конденсатор и цепь переменного тока

При определении значений переменного тока в конденсаторе применяют генератор и цифровой осциллограф. При подаче переменного напряжения фиксируются показатели сигнала тока на выходе и входе конденсатора. На мониторе осциллографа отобразится график сигнала, а также его амплитуда. При пропускании переменного тока через конденсатор сигнал получается с определенными шумами.

Помехи сигналу придают различные радиоэлементы. В число таких элементов входят резисторы. При увеличении частоты сигнала создается меньшее сопротивление переменному току со стороны конденсатора. Сдвиг фаз убывает при увеличении частоты вплоть до минимальных значений. На низких частотах величина сдвига фаз достигает 90 градусов.

Из этого следует, что сопротивление конденсатора зависит от частоты сигнала.

В ходе физико-математических преобразований удалось вывести универсальную формулу, используемую в расчетах сопротивления конденсатора:

$X_c=frac{1}{2}pi {FC}$, где:

  • $X_c$ – сопротивление конденсатора, оно выражается в омах (Ом),
  • $pi$ — постоянная величина, равна примерно 3,14.

В расчетах также используется емкость $C$ и частота $F$.

При подставлении в указанную формулу нулевых значений частоты, получаем постоянный ток с бесконечно большим сопротивлением. В этом случае происходит обрыв цепи. Такой показатель также называют Фильтром Высокой Частоты.

Если применить подобный фильтр конденсатора или резистора на звуковом оборудовании, то в динамике аппаратуры пользователь услышит писк, состоящий из высоких тонов. Фильтр полностью заглушает частоту баса.

Такие фильтры активно используют в радиоэлектронных приборах, где необходимо погасить нежелательную частоту и пропустить другую.

Принцип работы конденсатора

Конденсаторы стали основными элементами, из которых строятся все электрические схемы. Они удерживают заряды в неизменном положении долгое время. Накопление энергии происходит методом взаимного притяжения зарядов.

Чем больше площадь соединительного элемента, тем больше емкость конденсатора. При достижении большой площади фольгу и изолятор сворачивают в виде рулона. Получается две ленты бумаги и фольги. Затем их помещают в корпус и выводят наружу ленты по определенному контакту.

Корпус не должен собирать внутри влагу. Для этого ленту из бумаги обычно пропитывают парафином. Примерно так выглядит простой конденсатор, который можно встретить под капотом любой автомашины. Один контакт конденсатора всегда должен быть выведен от одной обкладки проводом наружу.

Металлический корпус устройства внутри присоединяется ко второй обкладке.

Конденсатор в самой простой электрической цепи при постоянном токе является разрывом. Обкладки устройства никогда не соприкасаются друг с другом.

Любая электрическая цепь состоит из четырех главных элементов:

  • электродвижущей силы аккумулятора;
  • резистора;
  • конденсатора;
  • переключателя.

В цепи нет тока при не включенном переключателе. При подключении к первому контакту образуется напряжение с аккумулятора, которое передается на конденсатор. В это время конденсатор начинает процесс зарядки.

Он продолжается до тех пор, пока емкость не будет полностью занята. В цепи начинает течь ток заряда. Его значения уменьшаются по мере того, как долго заряжается конденсатор.

Ток заряда после полной зарядки достигает нулевых значений.

Аккумулятор имеет идентичный знак заряда наравне с конденсатором. После размыкания переключателя получается разорванная электрическая цепь, где есть два источника энергии:

  • конденсатор;
  • аккумулятор.

При разрядке конденсатора нужно перевести переключатель в соответствующий режим. Тогда накопленный заряд на обкладках конденсатора начнет через сопротивление разряжаться.

Электрическая батарея постоянного напряжения при работе конденсатора способна выдавать переменный ток. В процессе зарядки его значения изменяются от максимальных до нуля.

Конденсаторы с незначительным зарядом в процессе разрядки через резистор дают переменный ток, который изменяется от максимального значения до нуля.

После этого конденсатор демонстрирует разрыв цепи, по которой ток больше не может течь.

Подобные процессы в электрической цепи называются переходными. Они происходят в цепях с постоянным напряжением при участии реактивных элементов.

Эти процессы выражаются следующей формулой:

$ au = RC$, где:

  • $ au$ — постоянная времени переходного процесса,
  • $R$ – это активное сопротивление нагрузки,
  • $C$ – емкость конденсатора.

Источник: https://spravochnick.ru/fizika/kondensator_v_elektricheskoy_cepi/

Конденсатор, соединение конденсаторов, RC цепь

Итак, продолжаем изучать основы электроники(а начало тут )) и сегодня мы рассмотрим еще один основополагающий элемент – а именно конденсатор. Также в этой статье мы рассмотрим дифференцирующую и интегрирующую RC цепь.

Упрощенно можно сказать, что конденсатор – это резистор, но не обычный, а зависящий от частоты. И если в резисторе ток пропорционален напряжению, то в конденсаторе ток пропорционален не просто напряжению, а скорости его изменения.

  Конденсаторы характеризуются такой физической величиной как емкость, которая измеряется в Фарадах. Правда 1 Фарад – это чертовски большая емкость, обычно емкости измеряются в нанофарадах(нФ), микрофарадах(мкФ), пикофарадах(пФ) итп.

Как и в статье про резисторы, давайте сначала рассмотрим параллельное и последовательное соединения конденсаторов.  И если опять сравнивать соединения конденсаторов с соединениями резисторов, то тут все в точности да наоборот )

Параллельное соединение конденсаторов:

Общая емкость в случае параллельного соединения конденсаторов будет равна.

Последовательное соединение конденсаторов:

Общая емкость в случае последовательного соединения конденсаторов будет такой:

С соединениями конденсаторов между собой, в принципе, все понятно, особо нечего пояснять, так что двигаемся дальше

Источник: https://microtechnics.ru/osnovy-elektroniki-kondensator-soedinenie-kondensatorov-rc-cep/

Конденсатор в цепи переменного тока — Класс!ная физика

«Физика — 11 класс»

Читайте также:  Магнитная дефектоскопия

Постоянный ток не может идти по цепи, содержащей конденсатор, так как обкладки конденсатора разделены диэлектриком.
Переменный же ток может идти по цепи, содержащей конденсатор.

Есть источники постоянного и переменного напряжений, в которых постоянное напряжение на зажимах источника равно действующему значению переменного напряжения. Цепь состоит из конденсатора и лампы накаливания, соединенных последовательно. При включении постоянного напряжения (переключатель влево) лампа не светится.

При включении переменного напряжения (переключатель вправо) лампа загорается, если емкость конденсатора достаточно велика.

Под действием переменного напряжения происходит периодическая зарядка и разрядка конденсатора.
Ток, идущий в цепи при перезарядке конденсатора, нагревает нить лампы.

Если сопротивлением проводов и обкладок конденсатора можно пренебречь,

то напряжение на конденсаторе равно напряжению на концах цепи.

Следовательно,

Заряд конденсатора меняется по гармоническому закону:

q = CUm cos ωt

Сила тока, представляющая собой производную заряда по времени, равна:

Колебания силы тока опережают по фазе колебания напряжения на конденсаторе на.

Амплитуда силы тока равна:

Im = UmCω

Если ввести обозначение

и вместо амплитуд силы тока и напряжения использовать их действующие значения, то получим

Величину Хс, обратную произведению ωС циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением.

Роль этой величины аналогична роли активного сопротивления R в законе Ома.

Действующее значение силы тока связано с действующим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение для участка цепи постоянного тока.

Это и позволяет рассматривать величину Хс как сопротивление конденсатора переменному току (емкостное сопротивление).

Чем больше емкость конденсатора, тем больше ток перезарядки. Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора.

В то время как сопротивление конденсатора постоянному току бесконечно велико, его сопротивление переменному току имеет конечное значение Хс.

С увеличением емкости оно уменьшается.

Уменьшается оно и с увеличением частоты ω.

На протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля.
В следующую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.

Итак,
сопротивление цепи с конденсатором обратно пропорционально произведению циклической частоты на электроемкость. Колебания силы тока опережают по фазе колебания напряжения на.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Следующая страница «Катушка индуктивности в цепи переменного тока»
Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях — Аналогия между механическими и электромагнитными колебаниями — Уравнение, описывающее процессы в колебательном контуре.

Период свободных электрических колебаний — Переменный электрический ток — Активное сопротивление.

Действующие значения силы тока и напряжения — Конденсатор в цепи переменного тока — Катушка индуктивности в цепи переменного тока — Резонанс в электрической цепи — Генератор на транзисторе. Автоколебания — Краткие итоги главы

Источник: http://class-fizika.ru/11_28.html

Цепь переменного тока с ёмкостью

Поскольку после того, как конденсатор зарядился полностью, он не пропускает через себя электрический ток, и поэтому идеальный конденсатор (ёмкость), установленный в цепи постоянного тока, обладает бесконечно большим сопротивлением.

Цепь переменного тока с ёмкостью

Если же произвести подключение конденсатора к источнику переменного тока, то процесс его заряда и разряда будет осуществляться непрерывно. Это означает, что через ёмкость будет проходить переменный электрический ток.

Ток i при условии включения в цепь переменного тока некоторой ёмкости будет определяется количеством электричества q, протекающего по этой цепи в единицу времени. Из этого следует, что:

где Δq – это изменение заряда q (то есть количества электричества) в течение времени Δt.

Что касается заряда q, который накоплен при изменениях напряжения u в конденсаторе, то он также подвержен непрерывному изменению, которое выражается формулой:

где Δu – это изменение напряжения u в течение промежутка времени Δt.

Та скорость, с которой изменяется напряжение (она выражается отношением Δu/Δt) будет иметь свои наибольшие значения тогда, когда угол ωt равняется 360°, 180° и 0°. Из этого следует, что значение тока i принимает свои наибольшие величины именно в эти моменты времени. Если же угол ωt равняется 270° и 90°, то i = 0, поскольку скорость изменения напряжения Δu/Δt = 0.

Ток и напряжение в цепи переменного тока с ёмкостью

Ток заряда, который принято считать положительным, в цепи течет тогда, когда происходит заряд конденсатора, то есть на протяжение первой четверти периода.

По мере того, как разница потенциалов на электродах ёмкости растет вследствие накопления ею электрического заряда, значение тока i падает.

Когда ωt = 90°, наступает полный заряд емкости, значение i = 0, а разность потенциалов между электродами конденсатора обретает то же самое значение, что и напряжение источника тока.

Значение тока i становится отрицательным тогда, когда он меняет свое направление. Это происходит тогда, когда ёмкость начинает разряжаться, то есть во второй четверти периода. Тогда, когда u= 0 а ωt = 180°, значение тока i становится максимальным.

В этот же самый момент ток i начинает течь в обратном направлении (его принято считать отрицательным), начинается процесс перезарядки емкости, а полярность напряжения u источника также меняется на противоположную. Когда ωt = 270° значение тока i становится равным нулю, и поэтому процесс заряда прекращается.

После чего начинается разряд при первоначальном (то есть положительном) направлении тока.

Получается, что ёмкость и заряжается, и разряжается два раза на протяжении одного периода изменения напряжения. Из этого следует, что переменный ток i протекает в цепи непрерывно. Когда ёмкость включается в цепь переменного тока, то ток i опережает напряжение u по фазе на угол, равный 90°. Можно также сказать, что напряжение u отстает по фазе от тока i на угол, равный 90°.

Емкостное сопротивление

Сопротивление, которое проявляет ёмкость к переменному току, носит название емкостного. Единицей измерения этой величины является Ом, а обозначается оно Хс. Физическая природа емкостного сопротивления заключается в том, что оно обусловлено возникающей в конденсаторе ЭДС ес.

Направление этой электродвижущей силы противоположно приложенному напряжению u, поскольку заряженная ёмкость рассматривается в качестве источника, у которого между пластинами действует некоторая ЭДС ес.

Именно она препятствует тому, чтобы под действием напряжения u происходило изменение тока, то есть оказывает определенное сопротивление его прохождению.

Источник: http://selectelement.ru/basic-concepts/ac-capacitor.php

Электроемкость. Конденсаторы

Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников.

Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U. Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q.

В этом случае можно ввести понятие электрической емкости.

Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

В системе СИ единица электроемкости называется фарад (Ф):

Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники.

Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства.

Такие системы называются конденсаторами, а проводники, составляющие конденсатор, – обкладками.

Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским.

Электрическое поле плоского конденсатора в основном локализовано между пластинами (рис. 1.6.1); однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния.

В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками (рис. 1.6.2).

Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля.

Рисунок 1.6.1.

Поле плоского конденсатора

Рисунок 1.6.2.

Идеализированное представление поля плоского конденсатора. Такое поле не обладает свойством потенциальности

Каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого выражается соотношением:

Согласно принципу суперпозиции, напряженностьполя, создаваемого обеими пластинами, равна сумме напряженностей        и полей каждой из пластин:

Внутри конденсатора вектора и параллельны; поэтому модуль напряженности суммарного поля равен:

Вне пластин вектора и направлены в разные стороны, и поэтому E = 0. Поверхностная плотность σ заряда пластин равна q / S, где q – заряд, а S – площадь каждой пластины. Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed, где d – расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:

Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы. Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2.

Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L.

Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами: сферический конденсатор:

цилиндрический конденсатор:

Конденсаторы могут соединяться между собой, образуя батареи конденсаторов. При параллельном соединении конденсаторов (рис. 1.6.

3) напряжения на конденсаторах одинаковы: U1 = U2 = U, а заряды равны q1 = С1U и q2 = C2U.

Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом q = q1 + q2 при напряжении между обкладками равном U. Отсюда следует

Таким образом, при параллельном соединении электроемкости складываются.

Рисунок 1.6.3.

Параллельное соединение конденсаторов. C = C1 + C2

Рисунок 1.6.4.

Последовательное соединение конденсаторов.

При последовательном соединении (рис. 1.6.4) одинаковыми оказываются заряды обоих конденсаторов: q1 = q2 = q, а напряжения на них равны  и Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками U = U1 + U2. Следовательно,

При последовательном соединении конденсаторов складываются обратные величины емкостей.

Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.

Источник: http://www.its-physics.org/elektroemkost-kondensatory

Ссылка на основную публикацию