Блуждающие токи, защита от блуждающих токов

Что такое блуждающие токи и как от них избавиться?

Последние 10-20 лет во многих мегаполисах наблюдается резкое снижение срока службы подземных металлических сооружений (трубопроводов горячего и холодного водоснабжения, системы отопления и т.д.).

После проведения ряда экспертиз было установлено, что основная причина разрушения металла – электрохимическая коррозия, которую вызывают блуждающие токи.

Из данной статьи Вы узнаете о природе этого явления, а также получите представление о способах защиты подземных сооружений и инженерных коммуникаций от гальванической коррозии.

Что такое блуждающий ток?

Как известно, земля является проводником электрического тока, что позволяет применять это свойство для создания заземляющих устройств. Но в тоже время, когда почва выступает в качестве токопроводящей среды, в ней образуются утечки. Поскольку нельзя спрогнозировать в какое время начнется процесс, и где он будет протекать, то такие проявления получили термин «блуждающие».

Причины и источники возникновения

Как мы помним из школьного курса физики, для образования электрического тока необходимо, чтобы возникла разность потенциалов между двумя участками цепи. Принцип возникновения блуждающих токов – аналогичный. Только роль проводника в данном случае исполняет земля.

На территории современных городов и населенных пунктов находится множество электрифицированных объектов, начиная от ЛЭП и заканчивая рельсовым транспортом, включая оборудование тяговых подстанций.

Их объединяет один фактор – расположение на земле. Это приводит к довольно специфичному взаимодействию с последней, проявляющемуся в виде появления блуждающих токов.

Ниже представлена таблица, которой приводятся их потенциальные источники и условия образования электросвязи связи с почвой.

Таблица 1. Потенциальные источники.

Название объекта Взаимосвязь с землей
Различные виды распределительных устройств, оборудование подстанций, ВЛ с нулевым проводником (глухозаземленная нейтраль), подключенным к повторным заземлителям. При наличии на объекте ЗУ.
ВЛ сетей с изолированной нейтралью, кабельные магистрали. Возникает при повреждении изоляционного покрытия токонесущих элементов кабелей.
Рельсовый электротранспорт, системы с заземленной нейтралью. Наличие технологической связи между одним из проводников и землей.

Механизм образования блуждающих токов

В таблице мы привели в качестве примера несколько источников, теперь рассмотрим подробно, как в них образуется интересующий нас процесс. Как уже упоминалось выше, чтобы он появился, между двумя точками на земле должно произойти возникновение разности потенциалов. Такие условия создаются контурами ЗУ систем с глухоизолированной нейтралью.

Нулевой провод (PEN) одним концом соединен с ЗУ электроподстанции, а вторым подключен к шине PEN потребителя, которая соединена с заземляющим устройством объекта.

Соответственно, разница электрических потенциалов между выводами нулевого проводника будет передаваться ЗУ, что создаст условия для образования цепи.

Величина утечки будет незначительной, поскольку основная нагрузка пойдет по пути наименьшего сопротивления (нулевому проводнику), но, тем не менее, часть ее пойдет по земле.

Образование блуждающих токов между ЗУ нулевого провода

Практически аналогичные условия образуются, когда возникают проблемы с изоляцией проводов (разрушение оболочек) кабельных магистралей или ВЛ. При возникновении КЗ на землю, в этой точке потенциал равный или близкий к фазе. Это вызывает образование тока утечки к ближайшему ЗУ с потенциалом PEN-провода.

В приведенном примере о постоянной утечке переменных токов речь не идет, поскольку согласно действующим нормам на поиск и устранение повреждения отводится два часа. При этом, в большинстве случаев, отключение поврежденной линии или локализация участка с КЗ производится автоматически. Процесс может существенно затянуться, если сила тока КЗ ниже аварийного порога.

Как показывает практика, наибольшая доля источников токов постоянной утечки приходится на городской и пригородный рельсовый электротранспорт. Механизм их образования продемонстрирован ниже.

Рельсовый электротранспорт в качестве источника блуждающих токов

Обозначения:

  1. Контактный провод, от которого получает питание силовая установка электротранспорта.
  2. Питающий фидер (подключен к контактному проводу).
  3. Одна из тяговых подстанций, питающая сети трамваев.
  4. Дренажный фидер (подключен к рельсам).
  5. Рельсы.
  6. Трубопровод на пути прохождения блуждающих токов.
  7. Анодная зона (положительные потенциалы).
  8. Катодная зона (отрицательные потенциалы).

Как видно из рисунка, постоянное напряжение в тяговую сеть поступает с подстанции и по рельсам возвращается обратно. При недостаточном сопротивлении рельсовых путей относительно земли, в грунте возникают электрические блуждающие токи. Если на пути распространения утечки блуждающих токов находится трубопровод или другая металлическая конструкция, то она становится проводником электричества.

Это связано с тем, что ток распространяется по пути наименьшего сопротивления. Соответственно, как только появляется проводник, ток будет распространяться по металлу, поскольку его электрическое сопротивление меньше, чем у земли. В результате участок трубопровода, через который проходит электроток, будет в большей степени подвержен коррозии металла. О причинах этого рассказано ниже.

Связь блуждающего тока и коррозии на металле

Ввиду наличия в земле воды и растворенных в ней солей любая металлическая конструкция в почве подвержена коррозии. Но если металл помимо этого подвергается воздействию блуждающих токов, то процесс приобретает электролитическую природу.

Согласно закону Фарадея скорость электрохимической реакции напрямую зависит от тока, протекающего между анодом и катодом.

Следовательно, на скорость коррозии металлической трубы (уложенной в грунте) будет влиять электрическое сопротивление почвы, а также сложная природа процессов, протекающих в катодной и анодной зоне.

В результате металлическая конструкция помимо обычной коррозии подвергается воздействию токов утечки. Это может стать причиной образования гальванической пары, что существенно ускорит процесс коррозии.

На практике отмечались случаи, когда участок трубопровода системы водоснабжения, подвергавшийся гальванической коррозии выходил из строя через два года, при расчетном сроке эксплуатации 20 лет.

Пример такого воздействия представлен ниже.

Труба после воздействия блуждающих токов

Способы защиты от блуждающих токов

Для предотвращения пагубного воздействия электрохимического потенциала применяются методы защиты, которые могут отличаться в зависимости от особенностей металлических конструкций. Рассмотрим в качестве примера способы защиты водопроводных труб, полотенцесушителей и газопроводов, начнем в порядке данной очередности.

Видео про различные защиты от блуждающих токов

Защита водопроводных труб

Для проложенных в земле металлоконструкций, в частности водопроводных труб, применяются две методики защиты: пассивная и активная. Подробно опишем каждую из них.

Пассивная защита

Данная методика предусматривает нанесение на поверхность металлоконструкций специального изолирующего слоя, образующего защитный барьер между землей и металлической оболочкой. В качестве изоляционного материала используются полимеры, различные виды эпоксидных смол, битумное покрытие и т.д.

Пример защитного покрытия трубы для подземной укладки

К сожалению, современная технология не позволяет создать защитный барьер, обеспечивающий полную изоляцию.

Любое покрытие обладает определенной диффузионной проницаемостью, поэтому при данном способе возможна только частичная изоляция от грунта. Помимо этого следует учитывать, что в процессе транспортировки и монтажа может быть нанесено повреждение защитному слою.

В результате на нем образуются различные дефекты изоляции в виде микротрещин, царапин, вмятин и сквозных повреждений.

Поскольку рассмотренный метод не обладает достаточной эффективностью, он применяется в качестве дополнения активной защиты, о которой пойдет речь далее.

Активная защита

Под данным термином подразумевается управление механизмами электрохимических процессов, которые протекают в местах контакта металлических конструкций с образующимся в грунте электролитом. Для этой цели применяется катодная поляризация, при которой отрицательный потенциал смещает естественный.

Реализовать такую защиту можно гальваническим методом или используя источник постоянного тока.

В первом случае применяется эффект гальванической пары, в которой анод, подвергается разрушению (жертвенный анод), защищая при этом металлоконструкцию, у которой потенциал несколько ниже (см. 1 на рис.5).

Описанный способ эффективен для грунтов с низким сопротивлением (не более 50,0 Ом*м), при более низком уровне проводимости данный метод не применяется.

Применение источника постоянного тока в катодной защите позволяет не зависеть от сопротивления грунта. Как правило, источник изготовлен на базе преобразователя, запитанного от электрической цепи переменного тока. Конструктивное исполнение источника позволяет задать уровень защитных токов в соответствии со сложившимися условиями.

Рисунок 5. Варианты реализации катодной защиты

Обозначения:

  1. Применение жертвенного анода.
  2. Метод поляризации.
  3. Проложенная в земле металлоконструкция.
  4. Закладка в грунте жертвенного анода.
  5. Источник постоянного тока.
  6. Подключение к источнику малорастворимого анода.

Защита полотенцесушителей

Полотенцесушителям и другим оконечным металлическим устройствам на водопроводных трубах (смесителям) коррозия, вызванная блуждающими токами, не угрожала до тех пор, пока в быту не стали широко применяться пластиковые трубы. Даже, если в Вашем стояке установлены металлические трубы, не факт, что у соседа снизу они не пластиковые, да и для отводов в ванную и кухню наверняка используется пластик.

Чтобы обеспечить защиту от аварийных утечек тока и не допустить электрокоррозии, необходимо выровнять потенциалы, заземлив полотенцесушитель, водопроводные трубы в стояке, а также батарею отопления.

Защита газопроводов

Защита подземных газопроводов от блуждающих токов, которые вызывают коррозию, осуществляется точно так же, как и для водопроводных труб. То есть применяется один из двух вариантов активной катодной защиты, принцип работы которой рассматривался выше.

Как измерить блуждающие токи?

Для оценки опасности от токов утечки производится комплекс измерительных работ, куда входит:

  • Измерение уровня тока и направление его движения по оболочкам кабелей магистральной линии.
  • Измерение разности потенциалов между контактных рельсов (рельсовой сетью) и проложенными в земле металлическими конструкциями.
  • Измерение изоляции рельсов от грунта на контрольных участках рельсового полотна.
  • Оценка плотности тока утечки с оболочки кабельных линий в грунт.

Измерения величины блуждающих токов производятся специальными приборами. При этом выбирается время, на которое приходится максимальный трафик рельсового электротранспорта.

Набор инструментов для измерения блуждающих токов

Процесс измерения блуждающих токов выполняется в трансформаторных и тяговых подстанциях расположенных рядом с рельсовыми путями.

При этом один из электродов, подключенных к измерительному прибору, соединяют с ЗУ, а второй, втыкается в землю в 10-и метрах от тяговой подстанции.

Если между потенциалами на электродах появляется разность, она фиксируется прибором.

Рекомендуем также почитать:

Источник: https://www.asutpp.ru/bluzhdayuschie-toki.html

Защита трубопроводов от блуждающих токов

Защита от блуждающих токов трубопроводов. Как и время, ток не лежит на месте, а старается постоянно течь по пути наименьшего сопротивления. Как известно, в замкнутых цепях он движется от фазы к нулю или от плюса к минусу, а блуждающий сам выбирает направление своего движения.

Возникает этот эффект при использовании поверхности земли в качестве проводника (токопроводящей среды) в системах электросвязи, системах электрификации железнодорожного транспорта и электроснабжения. Но если рядом проложен кабель, трубопровод или любая строительная конструкция, он начинает течь через эти конструкции, вызывая их коррозию и повреждение.

От этого может возникнуть такая проблема как блуждающий  или непрогнозируемый ток – опасное явление.

Существуют три источника проблемы:

1. неудовлетворительная изоляция электрокабелей,

2. использование поверхности земли в качестве проводника,

3. мощный радиосигнал, например, от вышки.

Ток блуждающий мало потенциален, практически не представляют опасности для здоровья человека, но очень опасны для любых металлических конструкций, находящихся в земле. Наибольший вред наносит постоянный ток, который ускоряет процесс коррозии.

Нулевой провод к электрической подстанции подводится прямо с земли, в обычной ситуации в замкнутой цепи ток по фазному проводу стремится к нулевому, закопанному у подстанции.

Читайте также:  Регулировочные свойства электродвигателей

Но если рядом проложена, теплотрасса, электрокабель, тогда начинает проникать не в землю, а выбирает другой путь, а именно через кабель, по трубопроводу.

Наибольшие повреждения возникнут там, где ток опять устремляется в земную часть.

Защита от блуждающих токов

Самый распространенный вид борьбы – заземление электроприборов. Правильно выполненное выровняет потенциалы и исключает их образование. Исключение составляют все металлическое и водяное, вода является хорошим проводником с низким удельным сопротивлением.

Заземление не даст результат, даже если будут применены трубы из пластика, напрашивается вывод, надо заземлять смеситель и кран. Нет, этого делать не нужно.

Токи блуждающие в быту встречаются при попытке использовать трубы водопровода или отопления в качестве заземления, при отматывании электросчетчика соседями.

В промышленности эта проблема решена научным способом, созданием определенного электрического потенциала в месте появления блуждающего тока, чтобы принудительно увеличить сопротивление этому току.

Другой существенный способ для магистральных трубопроводов – создать препятствие диэлектрической изоляцией. Особое внимание заземлению и изоляции уделяют на заправочных станциях, поскольку даже протекание жидкости по трубопроводу создает на поверхности трубы статическое электричество.

Разность потенциалов является источником искры, а она следствием пожара или взрыва.

Источник: http://ampersite.ru/sovety-elektrika/bluzhdayushchij-tok-i-zashchita-ot-nego.html

Блуждающие токи: причины возникновения, способы защиты от коррозии водопроводных труб

Возникновение тока в проводнике обусловлено разностью потенциалов на его концах. Блуждающие токи возникают, когда токопроводящей средой становится земля. Это явление оказывает разрушающее влияние на металлические предметы, находящиеся в земле или имеющие с ней точки соприкосновения.

В многоквартирных домах блуждающие токи появляются из-за утечек в системах электроснабжения. Это ускоряет коррозию труб в несколько раз по сравнению с проектной. Природа блуждающих токов в том, что потенциалы заземлённых конструкций различны. Причинами появления токов утечки могут быть:

  • Неправильная эксплуатация электрических сетей, применение водопроводных и отопительных труб вместо нулевого проводника.
  • Не соответствующее требованиям безопасности подключение бытовых приборов: стерилизаторов, стиральных машин, посудомоек, при котором система электроснабжения дома оказывается связанной с трубами водоснабжения и отопления.
  • Повреждения изоляции проводников в процессе эксплуатации.

Неправильные подключения в 3-проводниковых схемах, где, кроме фазного и нулевого рабочего проводников, имеется ещё нулевой защитный, приводит к растеканию тока по металлоконструкциям. Следует избегать ошибок подключения. Не подключать в одно место нулевой рабочий и нулевой защитный проводники, не использовать защитный вместо рабочего. Кроме коррозии, это может вызвать электротравмы у людей.

Возникновение блуждающих токов может вызываться заменой металлических труб на пластиковые. Сами пластиковые трубы коррозии не подвержены, но металлическая арматура в квартирах, такая как полотенцесушители и смесители может ржаветь. Объясняется это тем, что когда все трубы были металлическими, в подвалах их заземляли специальными контурами.

Защита от электрокоррозии

Под землёй проходит большое количество трубопроводов и кабелей, которые нуждаются в антикоррозионной защите. Для защиты магистральных трубопроводов применяются следующие методы:

  • Метод катодной защиты. Он основан на формировании с помощью катодных станций на подземных сооружениях потенциалов, увеличивающих сопротивление блуждающему току.
  • Создание диэлектрической изоляции.
  • Возможно увеличивать продольное сопротивление трубопроводов, используя врезку изоляционных муфт.
  • Замена металлических труб на пластмассовые.

Блуждающие токи на заправках

На заправках появление блуждающих токов наиболее опасно. Там следует предотвратить малейшую возможность возникновения искры. Для защиты используется заземляющий контур и тщательное заземление всех металлических частей.

Следует опасаться и статического электричества, источником которого может явиться водитель. Блуждающие токи на теле могут образоваться в результате трения о синтетические покрытия внутри машины. Этого иногда бывает достаточно, чтобы воспламенился пистолет.

Нужно при выходе из машины выровнять потенциалы, взявшись одной рукой за машину, а другой за бензоколонку.

Статическое электричество накапливается не только на одежде. Опасным может быть мобильный телефон и включённый двигатель. Не рекомендуется держать топливо в пластмассовых канистрах.

Трение бензина о поверхность пластика тоже создаёт статическое электричество. Это может вызвать искру при попытке залить бензин в бензобак.

Лучше использовать для перевозки бензина железные канистры.

Блуждающие токи опасны. Они вызывают коррозию и выход из строя подземных коммуникаций. В многоквартирных домах они выводят из строя раньше срока инженерное оборудование, разрушают водопроводные трубы и системы отопления.

В некоторых случаях они даже представляют угрозу для жизни людей.

Необходимо бороться с этим явлением, не нарушать правил техники безопасности при проведении любых электротехнических работ и следить за тем, чтобы все приборы были правильно подключены и заземлены.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/tok/bluzhdayuschie-toki-i-zaschita-vodoprovodnyh-trub-ot-korrozii.html

Блуждающие токи: что это, причина, как избавиться

Всем знакомо понятие электрического тока. Есть проводник, по нем движутся заряженный частицы, на противоположных концах (или в двух произвольных точках) возникает разность потенциалов.

Использование этого физического явления для организации электропитания — безусловное благо цивилизации.

Появляется возможность передавать электроэнергию на значительные расстояния, приводить в движение механизмы, получать тепло, изображение, звук, преобразовывать электрическую энергию в механическую.

А если движение заряженных частиц возникает в естественном проводнике, например — в грунте? Это явление называется «блуждающие токи».

Их появление не сулит ничего хорошего: возникает опасность поражения электротоком, разрушаются элементы металлических конструкций, расположенных в земле.

Кроме того, на «обеспечение» блуждающих токов тратится определенное количество энергии. То есть, возникает незапланированный перерасход.

Как возникает это явление

Рассмотрим блуждающие токи на примере электрифицированной железной дороги, под которой проложен трубопровод.

Питание электропоезда осуществляется с помощью двух контактных линий: фазный провод — это контактная сеть, расположенная на опорах-столбах и подвешенная на массивных изоляторах.

А нулевой «провод» — это рельсы.

На всем пути следования располагаются тяговые подстанции, которые работают по одинаковому принципу: нулевой потенциал соединен с физической «землей» в качестве заземления (зануления).

Поскольку рабочее заземление в любом случае имеет физический контакт с грунтом, это абсолютно безопасно.

Между нулевым и фазным проводниками (рельсы и контактный провод) протекает рабочий электрический ток. Он штатно возникает при соединении колес с рельсами и пантографа электровоза с контактной линией.

Поскольку рельсы непосредственно связаны с грунтом, можно предположить, что в земле также возникает потенциал, равный потенциалу нулевого проводника. Если он одинаковый на всем протяжении рельсового пути – нет проблем, это нормальная и безопасная ситуация.

Но железная дорога редко прокладывается по прямой. Кроме того, электрическая связь между физической землей и металлом ж/д пути не всегда стабильна.

Получается, что от одной тяговой подстанции до рядом стоящей (несколько десятков километров) электрический ток может протекать как по рельсу, так и по грунту. То есть, электроны могут блуждать по кратчайшему пути.

Вспоминаем про кривизну ж/д пути, и получаем те самые блуждающие токи, протекающие в толще грунта.

А если в этом месте проложены коммуникации (например, стальной трубопровод), то электроны протекают по его стенкам (смотреть иллюстрацию).

Где проблема

По аналогии с обычными электрическими процессами, возникает электрохимическая реакция. Блуждающий ток стремится по пути наименьшего сопротивления (мы же понимаем, что грунт в сравнение с металлической трубой является худшим проводником).

В том месте, где проводимость между рельсами и трубопроводом самая высокая (мокрая земля, железистый грунт, и другие причины), возникает так называемая катодная зона с точки зрения трубопровода. Электрический ток как бы «затекает» в трубу.

Пока еще это не опасно: трубопровод расположен в грунте, разницы потенциалов нет, у вас из крана не потечет вода под напряжением 3000 вольт.

Пройдя по трубе до благоприятного места перетекания в рельсы, электроны устремляются по грунту в сторону «штатного» проводника. Возникает анодная зона, электроток «вытекает» из трубы, прихватывая за собой частички металла (на молекулярном уровне).

По всем законам протекания электрохимических процессов, на этом участке интенсивно развивается коррозия.

Водопроводчики недоумевают: труба из качественной стали, прошла все возможные антикоррозийные обработки, уложена согласно техническим условиям, срок эксплуатации минимум 50 лет. И вдруг прорыв и проржавевшая дыра размером с ладонь.

И это все за каких-то пару лет. Причем электрохимической коррозии подвергается любой металл, будь то сталь, медь или алюминий.

Никакой связи с влажностью почвы нет, разве что блуждающие токи выбирают «мокрое место» для формирования анодной и катодной зоны. Это страшный сон аварийных бригад водоканала. Если не согласовывать проекты между отраслевыми ведомствами — проблема становится неконтролируемой.

Побочный эффект, усугубляющий потери

Напротив катодной зоны «жертвы», то есть трубопровода, возникает анодная зона рельсового пути. Это логично: если электроток куда-то входит, он должен откуда-то выходить, точнее вытекать.

Это ближайшее с точки зрения электропроводности грунта место, где рельс имеет электрический контакт с физической землей (грунтом). В этой точке происходят аналогичные электрохимические разрушения металла железнодорожного полотна.

А вот это уже проблема, связанная с безопасностью людей.

Кстати, эта ситуация характерна не только для магистральных железных дорог и трубопроводов. Да и прокладываются они не всегда параллельно друг другу. А вот в городе, где рядом с многочисленными подземными коммуникациями проходят трамвайные пути, возникает такое количество разнонаправленных блуждающих токов, что впору задуматься о комплексных мерах защиты.

На примере железной дороги, мы разобрали принцип негативного влияния паразитных токов. Эти процессы запрограммированы (если можно так сказать) самой конструкцией,

А где еще существует «блуждающая» проблема

Там, где генерируется электрическая энергия (что довольно логично). Разумеется, в эту «группу риска» входят не только электростанции. Там более, что на таких объектах подобных проблем практически не существует. Блуждающие токи возникают на пути следования электроэнергии к потребителю. Точнее, в точках преобразования напряжения: в зонах действия трансформаторных подстанций.

Нам уже понятно, что для появления этих самых паразитных токов необходима разность потенциалов. Представим типовую трансформаторную подстанцию, в которой применяется система заземления TN-C. При изолированной нейтрали, заземляющие контуры соединены между собой нулевым проводником, обозначаемым аббревиатурой PEN.

Получается, что по этому проводнику протекает рабочий ток всех потребителей на линии, с одновременным их заземлением. Эта линия (PEN) имеет собственное сопротивление, соответственно в разных ее точках происходит падение напряжения.

PEN (он же заземляющий проводник) получает банальную разность потенциалов между ближайшими контурами заземления. Возникает «неучтенный» ток, который по описанному выше принципу протекает и по физической земле, то есть в грунте.

Если на его пути появляется попутный металлический проводник, блуждающий ток ведет себя так же точно, как в трубе под железнодорожным полотном.

То есть, в анодной зоне разрушает металл проводника (трубопровод, арматура железобетонных конструкций, оболочка кабеля), а в катодной зоне уничтожает PEN-проводник.

Пробой изоляции

Ситуация с нарушением изолирующей оболочки кабеля может возникнуть где угодно. Вопрос в том, какие будут последствия.

Предположим утечку фазы в грунт на значительном расстоянии от рабочего контура заземления.

Читайте также:  Конструктивное исполнение и режимы работы городской электрической сети

Если сила тока достаточно большая (точка пробоя большой площади), созданы «благоприятные» условия: влажный грунт, и прочее — достаточно быстро сработает защитная автоматика, и линия будет отключена.

А если сила тока меньше, чем ток «отсечки» автомата? Тогда между «пятном» утечки и «землей» возникают долгоиграющие блуждающие токи. А дальше вы знаете: попутный трубопровод, кабель в металлической оболочке, анодная зона, электрохимическая коррозия…

Собственно, группа риска определена:

  • Трубопроводы с металлическими стенками. Это может быть вода, канализация, нефте- или газопроводы.
  • Кабельные линии (силовые, сигнальные, информационные) с металлической оболочкой.
  • Металлическая арматура в конструкциях дорог или зданий.
  • Габаритные цельнометаллические сооружения. Например, емкость (танк) для хранения нефтепродуктов.

Защита от блуждающих токов

На самом деле, полноценной защиты от этой проблемы нет. Ее просто не может быть с точки зрения физики. Единственный действенный метод — подсунуть всепожирающим блуждающим токам иную жертву, которую не так жалко. Мало того, у этого приспособления и название соответствующее: «жертвенный анод». А методика именуется катодной защитой.

Принцип работы в исключении анодных зон на защищаемом объекте. Вместо них используются те самые жертвенные аноды, которые меняют по мере их электрохимического разрушения. А вокруг объекта формируются лишь безопасные для него катодные зоны.

Для того, чтобы система функционировала, требуется дополнительная энергия. В критических местах устанавливаются так называемые станции катодной защиты, которые запитаны от линий электропередач.

Это связано с некоторыми затратами, которые несравнимы с потерями на ремонт и восстановление испорченных объектов (трубопровода, кабеля и прочего).

А если защищаемый объект относится к опасной категории (например, нефтехранилище, в котором в результате электрохимической коррозии может произойти утечка продукта), то стоимость защитных устройств вообще не берется во внимание.

Недостатки систем катодной защиты

Методика отнюдь не универсальна, необходимо строить каждый объект под конкретные условия эксплуатации.

При неправильных расчетах силы защитного тока, происходит так называемая «перезащита», и уже катодная станция является источником блуждающих токов.

Поэтому, даже после монтажа и введения в строй, катодные системы постоянно контролируются. Для этого в разных точках монтируются специальные колодцы для замера силы тока защиты.

Контроль может быть ручным или автоматическим. В последнем случае устанавливается система слежения за параметрами, соединенная с аппаратурой управления катодной станцией.

Дополнительные способы защиты от блуждающих токов

  • Применение кабельных магистралей с внешней оболочкой, которая является хорошим диэлектриком. Например, из сшитого полиэтилена.
  • При проектировании систем энергоснабжения, использовать только системы заземления типа TN-S. В случае капитального ремонта сетей, заменять устаревшую систему TN-C.
  • При расчете маршрутов железнодорожных путей и подземных коммуникаций, по возможности разносить эти объекты.
  • Использовать под рельсами изолирующие насыпи, из материалов с минимальной электропроводностью.

Видео по теме

Источник: https://ProFazu.ru/elektrosnabzhenie/bezopasnost-elektrosnabzhenie/bluzhdayushhie-toki.html

Блуждающие токи: причина возникновения и защита от них

20.04.2017

Что такое блуждающий ток?

Металлические изделия, применяемые в электрике, быстро изнашиваются и теряют свои высокие технические характеристики из-за такого явления, как блуждающие токи. 

Что же такое «блуждающий ток»? Данное явление является одним из видов движения зарядов в определенном направлении. Заряженные частицы при этом появляются в земле, которая является в конкретной ситуации проводником.

Блуждающие токи приводят к разрушению металлических изделий, который расположены под землей или же слегка соприкасающиеся с ней. Именно во взаимодействии с почвой и таится опасность.

Для того, чтобы понять природу данного явления, необходимо тщательно разобраться в причинах его возникновения, а также в характеристиках и способах защиты от него.  

Блуждающие токи: причина возникновения 

Ежедневно и даже ежечасно люди в современном мире находятся в окружении различных электрических средств.

Следовательно, объемы потребляемой электроэнергии неумолимо растут, что приводит к необходимости строительства большего количества КТП (комплектных трансформаторных подстанций) и распределительных установок, а также к монтажу все новых линий электропередач, электросетей для поездов, контактных рельсов метрополитенов и т.п.

Известно, что земля не является электропроводной, а все вышеперечисленные объекты электроэнергии, так или иначе, взаимосвязаны с ней, и данная связь очень специфична.<\p>

Основа появления электрического тока – разность потенциалов в двух точках электрического проводника.

Блуждающие токи возникают по аналогичному принципу, отличие состоит в том, что проводником в данной ситуации является почва. Электрические системы, в которых присутствует изолированная нейтраль, характеризуются тем, что разность потенциалов обеспечивают контуры заземления.

При соединении нулевого проводника с данным контуром может возникнуть ситуация падения в напряжении из-за собственного сопротивления, которое появляется во время прохождения заряда. Данный проводник имеет обозначение PEN, что говорит о совмещенном нулевом защитном и нулевом рабочем проводниках.

Основание данного совмещенного проводника и контур заземления КТП соединены между собой. Также PEN-проводник соединяется с заземляющим устройством здания. Таким образом, два устройства заземления, а именно ЗУ трансформаторной подстанции и ЗУ объекта, являются основой возникновения разности потенциалов, откуда и появляются блуждающие токи.

 <\p>

В ситуации повреждения линий электропередач происходит практически аналогичная ситуация. То есть, земля является носителем разности потенциалов в случае возникновения замыканий. Как правило, львиная доля подобных повреждений ликвидируется при помощи автоматики. Важно, что устранение таким способом возможно лишь при масштабных утечках.

Нейтрализация данной проблемы при небольших значения более проблематична.<\p>

Небольшие блуждающие токи появляются как раз из-за обилия электротранспорта. Например, троллейбус подключен к электросети при помощи специальных конструкций, которые называются «штанги».

Они соединены с нулевыми и фазными проводниками и, как известно, находятся на самом троллейбусе. Именно поэтому данное транспортное средство характеризуется невозможностью производства больших блуждающих токов.<\p>

Электропитание поездов отличается от приведенного выше примера с троллейбусом.

В данном случае, нулевой проводник имеет соединение с рельсами, фазный, в свою очередь, находится над путями. Специальные токосъемники (пантографы) подают электрическую энергию к двигателю данного транспортного средства. Располагается пантограф на крыше электровоза, электропоезда или трамвая и имеет прямой контакт с кабелем питания. Тяговые подстанции – основа электропитания данного типа электросетей. Расстояние между  подстанциями одинаковое и неизменное. Блуждающие токи появляются из-за искривленности маршрутов. В данном случае заряженные частицы идут по траектории с наименьшим сопротивлением. То есть, при появлении возможности «срезать угол» заряд пройдет не через рельсы, а по земле.

Блуждающие ток: влияние на металл 

Под землей расположено огромное число различных объектов и изделий из металла: трубопроводы, кабельные линии, железобетон и др. Известно, что металл – это хороший проводник электрического тока, следовательно, заряд в данной ситуации пройдет не через почву, а по имеющемуся в ней металлу.

Зона, через которую электрический ток входит в грунт, называется «катодной зоной», а через которую выходит – «анодной зоной».<\p>

Относительно водопровода стоит поговорить подробнее.

Известно, что процесс коррозии в них неизбежен, а подземные воды отличаются большим содержанием растворимых микроэлементов и служат отличным проводником электричества. Таким образом, в металлических трубах под землей из-за процесса электролиза происходят коррозийные процессы.

Очень хорошо коррозия выражается в анодной зоне, а в катодной разрушения менее выражены.<\p>

Подводя итог, стоит отметить, что блуждающие токи оказывают разрушительное влияние на металлические изделия, являясь при этом причиной серьезных экономических потерь.

Как избежать пагубного влияния блуждающего тока?

Блуждающие токи устраняются таким способом, как катодная защита. Для того, что борьба с данным явлением происходила с минимумом препятствий, необходимо нейтрализовать вероятность возникновения анодной зоны на объекте защиты.

<\p>

Катодная защита производит электроток постоянного характера и при этом подключается к металлическим объектам полюсом с отрицательным значением. Положительный полюс присоединяется к анодам («жертвенные аноды»), забирающим львиную долю разрушительного влияния на себя.

Кроме того, объекты защиты покрываются специальными антикоррозийными покрытиями.

<\p>

Минусы катодной защиты:<\p>

  • вероятность «перезащиты», при которой увеличивается сверх нормы потенциал защиты и начинаются коррозийные процессы;
  • неверные расчеты защиты, которые являются причиной ускорения процессов коррозии рядом находящегося металла.

Как измерить блуждающий ток? 

Прежде, чем осуществляется монтаж трубопровода под землей, происходит вычисление блуждающих токов путем измерения разности потенциалов, о которой говорилось выше. Измерение осуществляется через каждые 1000 метров.

<\p>

Используемые измерительные приборы должны иметь степень точности не меньше 1,5, а минимальное собственное сопротивление равняется 1 МОм. Максимальный показатель разности потенциалов – 10 мВ. Продолжительность одного измерения должна быть не меньше 10 минут, а фиксация должна осуществляться каждые 10 секунд.

<\p>

Стоит отметить, что измерения в области действия электрического транспорта необходимо осуществлять в период пиковых нагрузок. Разность потенциалов, превышающая 0,04 В, говорит от том, что присутствуют блуждающие токи.

<\p>

Измерительными приборами могут выступать электроды сравнения, а именно: медно-сульфатный переносного типа и медно-сульфатный соединительного типа. Кроме того, необходим мультиметр цифрового типа и гибкий провод с хорошей изоляцией длиной не меньше 100м.

<\p>

Блуждающие токи таят в себе опасность даже при самых незначительных показателях и подразумевают под собой разрушительное воздействие подземных и других коммуникаций. Во избежание подобных ситуаций необходимо осуществлять профилактику по выявлению и последующему устранению данного явления.

Источник: https://www.elektro.ru/articles/detail/priroda-bluzhdayushchikh-tokov-i-zashchita-ot-nikh

Как защитить объект от блуждающих токов?

Блуждающие токи – это разновидность направленного движения частиц, возникающих в земле. Своё название они получили за непредсказуемый маршрут, который может проходить через водопровод, газопровод и другие находящиеся в земле коммуникации. Данные токи также известны как “нулевые”, по причине того, что их жизнь протекает в незаземленных металлических конструкциях.

Они появляются при наличии короткого замыкания в электрических сетях, а также из-за образования разности потенциалов между находящимися в земле элементами. Источником блуждающих токов может служить сама земля, используемая в качестве токопроводящей среды, нарушенная изоляция проводов или радиосигналы от телевизионных вышек.

Опасность данного явления заключается в возникновении коррозии на металлических конструкциях, полностью или частично находящихся в земле: фундаменте, рельсах, трубах и пр. Коррозия возникает в местах постоянно подверженных воздействию токов, что ведет к разрушению арматуры фундамента, используемого в качестве заземлителя.

Пример коррозии на металлических трубах

Чтобы обезопасить объект от блуждающих токов, необходимо выполнять следующие меры по его защите:

  1. Во-первых, установить заземление. Заземляющее устройство состоит из двух частей: заземлителя (проводящей части) и заземляющего проводника. Заземлитель представляет собой неразрывную схему из омедненных штырей, которые устанавливаются в землю, а заземляющий проводник выступает в роли соединителя между проводящим ток объектом и заземлителями, уводящими данный ток в землю. Количество глубинных заземлителей и способ их соединения подбираются на основе предварительных расчетов. Проектировщики берут во внимание такие параметры: размеры здания, специфика оборудования, класс безопасности и т.д. При возникновении источника утечки тока работающее защитное заземление позволит снизить опасное напряжение, выровняв разность потенциалов за счет отвода тока в токопроводящую среду.
  2. Во-вторых, проводить периодическую проверку заземляющего устройства. Данное мероприятие сводится к двум этапам: измерению сопротивления заземляющего устройства и проверке внешнего состояния одного из заземлителей.
  3. В-третьих, когда проблема блуждающих токов уже существует, необходимо тщательно обследовать объект, найти и устранить их источник. Если никаких повреждений на объекте потребителя нет, а блуждающие токи всё равно присутствуют, нужно учесть, что причиной их существования могут быть водопровод и газопровод. Поэтому все металлические коммуникации также следует объединять в основную систему уравнивания потенциалов.
Читайте также:  Линейные и точечные источники света

Подведем итоги: только комплексная защита и регулярная модернизация помогут справиться с нежелательными последствиями. Подходите внимательно к вопросу о выборе установки защитного заземления, а также к материалам, из которых оно выполнено.

Заземление ZANDZ изготовлено из коррозиестойкого материала по особой технологии. На металлический стержень нанесено однородное медное покрытие, толщина которого гарантирует отсутствие трещин, сколов и различного расслоения.

Данная особенность обеспечивает срок службы до 100 лет и защищает от вреда коррозии.

У вас остались вопросы? Получите бесплатную консультацию по заземлению и молниезащите прямо сейчас в нашем Техническом Центре!

 

Смотрите также:

[ Код новостного блока для вставки на Ваш сайт ] [ RSS лента для подписки на новости ]

Источник: http://www.ZandZ.ru/news/Kak_zaschitit_obyekt_ot_blujdayuschih_tokov

Блуждающие токи: причины возникновения и методы защиты

Блуждающие токи – разновидность тока, возникающая в земле, которая является и проводником. При попадании блуждающего тока на металлическую оболочку проложенных в земле кабелей происходит постепенное разрушение оболочки. В этом и заключается основная проблема этого явления. В этой статье мы рассмотрим это явление в целом, причины его возникновения, а также способы защиты.

Почему возникают блуждающие токи

Любой современный город имеет сложнейшую сеть различных электрических коммуникаций, многие из которых проложены в земле. Более крупные города имеют также контактные рельсы для трамваев и метро. Так как земля сама по себе способна проводить электрический ток, то зачастую между различными коммуникациями возникают определенные связи.

Напомним, что для появления электрического тока, то есть направленного движения заряженных частиц, необходима разность потенциалов между двумя различными точками проводника.

В данном случае, проводником является земля, а разность потенциалов возникает благодаря наличию контуров заземления в системах с изолированной нейтралью.

То есть, если нейтральный проводник присоединен к заземляющему контуру, то при прохождении через него электрического тока из-за сопротивления этого проводника напряжение снизится. Такой проводник называется PEN.

Один его конец соединен с системой заземления подстанции, а другой – с контуром заземления здания, куда ведет ЛЭП. В итоге обе системы заземления, к которым подключен PEN-проводник, обеспечивают разность потенциалов между его концами. Что в свою очередь вызывает блуждающие токи.

Подобное же явление можно увидеть при нарушении изоляции силового кабеля, проложенного в земле. В этом случае если происходит замыкание с землей, то земля получает определенный электрический потенциал.

Если это серьезная авария, то неисправность будет быстро устранена автоматическими устройствами защиты.

Но при малых значения утечки тока найти подобную проблему достаточно сложно, поэтому она может существовать достаточно долго.

Одной из основных причин появления блуждающих токов являются сети трамваев и метро. Троллейбусы, в свою очередь, подключаются к электросети с помощью «вилки», которая расположена на самом троллейбусе. Поэтому этот вид транспорта блуждающие токи не генерирует.

А вот электропитание для электричек подается немного по-другому. Нейтральный проводник присоединяется к рельсам, а фазный – прокладывается над ж/д дорогой. Электропоезд соединяется с ним с помощью пантографов.

Питание для электропоездов генерируют тяговые подстанции, расположенные вдоль всей трассы. При наличии поворотов ток как бы «срезает угол», то есть идет не по рельсам, а напрямую, через землю.

Воздействие блуждающих токов

Как уже говорилось выше, в земле расположено множество металлических конструкций, устройств и объектов: инженерные коммуникации, кабельные линии, ж/б строения.

Так как металлы гораздо лучше проводят ток, чем земля, то блуждающие токи тут же перейдут на эти металлические конструкции. Зона входа токов на конструкцию называется катодной. Зона выхода – анодной.

Обычно наибольшие разрушения происходят в анодной зоне.

Помимо грунта и металлических конструкций в земле есть и подземные воды, которые также являются отличным проводником тока.

Защита от блуждающих токов

Наиболее популярным средством защиты от блуждающих токов является установка катодной защиты (на фото ниже). Для этого необходимо предотвратить возникновение анодной зоны, оставив лишь катодную. Установка катодной защиты подает постоянный ток, будучи подключена своим «минусом» к металлоконструкции, а «плюсом» – к анодам, которые и получают на себя основной удар тока.

Для дополнительной защиты поверхность конструкции покрывается специальным составом, который защищает ее от коррозии.

Минусами установки катодной защиты являются:

  • «перезащита», когда потенциал установки оказывается слишком высок, и в итоге защищаемая конструкция все равно подвергается воздействию токов;
  • неправильный расчет или монтаж станции, вследствие чего также усиливаются процессы коррозии.

Стоит также сказать, что эта проблема актуальна не только для промышленных и коммерческих конструкций и трубопроводов, но и для обычных жилых домов.

Например, в системе отопления постоянно циркулирует горячая вода, которая, как мы уже говорили, является отличным проводником тока. И если трубы, и примыкающие к ним элементы не заземлены, то с течением времени на их наружной поверхности может появиться ржавчина.

Правильное заземление решает все подобные проблемы, поэтому в настоящее время этот метод защиты является одним из наиболее популярных.

Локализация и измерение блуждающих токов

При прокладке металлических труб блуждающие токи в земле определяются через вычисление разности потенциалов между двумя точками поверхности земли, расстояние между которыми составляет 100 метров.

Измерительные устройства должны иметь класс точности не менее 1,5 и собственное электрическое сопротивление – от 1 МОм. По действующим в настоящее время нормативам, разность потенциалов не должна превышать 10 мВ. Продолжительность измерения – не менее 10 минут, с фиксацией данных через каждые 10 секунд.

Измерение наличия блуждающих токов в зоне работы электрического транспорта необходимо производить во время наибольшей нагрузки транспортной сети. Если разность потенциалов будет больше 40 мВ – это значит, что в земле есть блуждающие токи.

В качестве измерительного прибора, как правило, используются два электрода: медно-сульфатный и соединительный. Также необходим точный мультиметр и гибкий изолированный провод (например, ПВС) длиной более 100 м.

В заключение скажем, что несмотря на казалось бы низкие значения, блуждающие токи со временем могут нанести существенные повреждения кабельной линии. Поэтому заранее следует предусмотреть меры по их выявлению и нейтрализации.

Источник: http://www.yugtelekabel.ru/bluzhdayushhie-toki-prichiny-vozniknoveniya-i-metody-zashhity.html

“Заблудившееся” электричество

Современный человек постоянно имеет дело с устройствами, в той или иной форме использующими электрическую энергию в процессе своего функционирования. С её помощью решается ряд практически важных задач, в том числе:

  • передача и обработка информации (телефон, компьютер, телевизор);
  • обогрев (электрокамин, электрические печь и духовка);
  • создание комфортной обстановки (кондиционер);
  • решение бытовых проблем (фен, стиральная машина);
  • выполнение различной механической работы (электродвигатели).

Всё это делает жизнь человека заметно более комфортной. Однако, наряду с достоинствами внедрение электроприборов сопровождается появлением определенных проблем, наличие которых приходится в обязательном порядке учитывать при выборе тех или иных решений. Электрический ток это:

  • электромагнитное поле, значительная напряженность которого оказывает вредное влияние на здоровье;
  • опасность поражения человека и животных;
  • появление многочисленных проводов и кабелей, которые портят интерьер дома, усложняют строительные решения и т.д.

Одним из таких неприятных факторов является блуждающая составляющая.

Это токи, протекающие в земле и вызывающие коррозию электрохимического типа полностью или частично находящихся в ней или хотя бы соприкасающихся с землей металлических предметов.

Наиболее подвержены ей трубопроводы, защитные и экранирующие металлические покровы кабелей, элементы конструкции зданий. Возникновение блуждающих токов в земле неизбежно:

  • часть электрооборудования использует землю в качестве второго провода;
  • подавляющее большинство электрических устройств в соответствии с требованиями ПУЭ заземляется;
  • нередки случаи утечки на землю за счет повреждения изоляции и неправильного включения электроприборов.

В жилом секторе причинами появления “блуждающего электричества” становятся:

  • использование водопроводных труб в качестве шин заземления;
  • “отматывание” показаний счетчика.

Все эти эффекты обычно не создают прямой угрозы для здоровья. Однако, интенсивный характер вызываемой ими электрохимической коррозии заставляет уделять большое внимание мероприятиям по защите от блуждающих токов.

Влияние на систему водоснабжения

При построении системы отопления и водоснабжения в массовом масштабе используются стальные трубы. За счёт заметно более высокой проводимости стали по сравнению с грунтом такие трубы начинают “притягивать” электрические заряды, а в местах входа и выхода тока (катодная и анодная зоны, соответственно) происходит интенсивная коррозия.

Физика возникновения явления сразу же определяет способы защиты от него. Подавить блуждающие токи в водопроводных трубах можно:

  • совершенствованием и поддержанием в исправном состоянии изоляции;
  • применением пластиковых вставок при условии обязательного дополнительного выравнивания потенциалов;
  • установкой катодной защиты.

Катодная защита

Катодный метод защиты трубопроводов от блуждающих токов считается наиболее эффективным в промышленности и на магистральных участках жилых объектов.

Суть этого приема заключается в создании постоянного тока, за счет которого компенсируется формирование анодной зоны на защищаемом объекте. Для этого отрицательный полюс защитной станции подключается к металлоконструкции, а положительный – к дополнительному электроду.

В результате анодная зона образующейся системы перемещается на этот электрод, а оставшаяся катодная зона корродирует заметно слабее.

По мере разрушения дополнительного электрода его просто меняют на новый.

Эффект “перезащиты” при построении таких систем компенсируется подбором напряжения, генерируемого станцией на основании результатов измерений по специальной методике.

Электрохимическая коррозия в доме

Эффекты электрохимической коррозии в быту чаще всего проявляются в системах обогрева.

Свою роль тут играет то, что теплоносителем в таких системах служит горячая вода, проводимость которой быстро увеличивается по мере роста температуры.

Блуждающие токи в полотенцесушителе приводят к накапливанию заряда на его поверхности. При интенсивной прокачке воды разность потенциалов и ток стекания достигают больших величин, что сопровождается интенсивным ржавлением.

Аналогичные процессы происходят в радиаторах водяного отопления при неправильно спроектированном или дефектном заземлении. Однако, за счет нахождения полотенцесушителя на виду и его постоянного контакта с влажной тканью его ржавление начинается быстрее и, кроме того, сразу же бросается в глаза.

Оборудовать санузлы квартир и индивидуальных домов станцией катодной защиты нецелесообразно.

Поэтому основным средством защиты от коррозии блуждающими токами в данной ситуации становится реализованное по всем правилам выравнивание потенциалов между металлическими поверхностями и их заземление.

При выполнении такого заземления заземляющий провод по возможности целесообразно подключать непосредственно на шину электрического щитка.

В жилом секторе большую популярность начинает приобретать разводка пластиковыми трубами. В этой ситуации можно не производить заземление и ограничиться выравниванием потенциалов.

Для реализации этой процедуры используется соединение со стояком отдельных элементов водопроводной и отопительной арматуры (полотенцесушитель, смеситель и т.д.).

Для такого подключения применяется обычный заземляющий провод.

Источник: http://StroikaDialog.ru/articles/communikacii/bluzhdayushie-toki

Ссылка на основную публикацию