Расчет тэна

Калькулятор расчета мощности трубчатого ТЭНа. Как определить мощность тэна по сопротивлению

ГлавнаяМощностьКак определить мощность тэна по сопротивлению

Расчет мощности трубчатого ТЭНа водонагревателя

5 (100%) голосов: 1

Это логично, что все покупатели, приобретая электрический водонагреватель, хотят, чтобы устройство за минимальный срок доводило необходимый объём воды до нужной температуры.

Вне зависимости от разновидности прибора – проточного либо накопительного – скорость нагрева зависит от его мощностных параметров.

Тут и появляются основные вопросы: какое оборудование выбрать? Будет ли достаточно выделенных на квартиру либо дом киловатт для функционирования? Какой бойлер лучше подойдёт, чтобы и воды хватало, и нагрузка на сеть была нормальной?

Производители предлагают такую шкалу соотношения мощности трубчатого электронагревателя и объёма бака:

  • 1кВт – 15 л;
  • 1,5 кВт – до 50 л;
  • 2 кВт – до 100 л;
  • более 5 кВт – до 200 л.

Мощность трубчатого электронагревателя (ТЭНа) зависит от его параметров. Его основная функция заключается в нагреве воды в бытовом водонагревателе. Получается, что чем выше мощность, тем быстрее будет повышаться температура жидкости.

Допустим, для нагрева 15 литров до 60 °С прибору с мощностными параметрами 1,5 кВт понадобится примерно полтора часа. Данного объёма будет достаточно, допустим, на один цикл разовой работы стиральной и посудомоечной машин. Для принятия душа потребуется примерно 100 литров воды.

Безусловно, до 60 °С воду греть не нужно.

Однако даже для нагрева её до оптимальной температуры понадобится устройство в 3 кВт и примерно три часа. По-другому говоря, чтобы решать разные бытовые задачи, требуются водонагреватели с различными параметрами. Логично выбирать универсальные варианты.

Лучше использовать калькулятор расчёта мощности трубчатого ТЭНа. Способ выбора заключается в проверке удельной поверхностной нагрузки выбранного нагревателя (должна не превышать максимально допустимую для определённой среды).

Ещё один параметр – технологическая возможность производителя (соотношение длины – диаметра – мощности – напряжения) выполнить трубчатый нагреватель по указанным значениям вследствие ограничений используемой нихромовой проволоки либо ограничений присутствующего устройства.

Просто вводите данные в калькулятор и быстро проводите расчёт мощности трубчатого ТЭНа водонагревателя.

Если вам помог калькулятор, то добавьте его в закладки, чтобы не потерять! Сочетание клавиш CTRL+D вам в этом поможет.

teplofan.ru

Типы электрических ТЭНов

Конструкция ТЭНа

Довольно подробно конструкция трубчатого электронагревателя показана на изображении ниже.

Самый важный элементом всех ТЭНов – это нагреватель, им служит чаще всего нить нихрома (1), расположенная в середине трубки по всей ее длине, она прикреплена к выходной шпильке (6).

Нить имеет определенное внутреннее сопротивление и когда по ней протекает электрический ток, она нагревается.

Материал для нагревателя должен обладать большим сопротивлением протекающему по нему току, их также выполняют из сплавов, включающих в свой состав нихром или константан.

Сопротивление нагревателя подбирается в соответствии с необходимой мощностью ТЭН. Здесь работает главный закон электротехники – закон Ома, и известная формула:

P = U*I, где I – сила тока, U – напряжение сети, P – мощность.  

Так, например, чтобы мощнсть ТЭНа была 1кВт (1000Вт), в однофазной сети 220В, сопротивление нити находится следующим образом:

Сначала определяем ТОК:

I= P/U=1000Вт/220В=4,55А

Непосредственно сопротивление определяем по фомуле:

R = U / I, где R – сопротивление ТЭНа в Омах U — напряжение в вольтах I — сила тока в амперах

Соответственно сопротивление нихромовой нити электронагревателя R=220/4,55=48,4 Ом.

Как вы поняли, чем ниже сопротивление трубчатого электронагревателя, тем выше его мощность, при этом практически вся она расходуется на нагрев нити. КПД ТЭНов близок к 100%, т.е. чем он мощнее, тем больше и быстрее нагревается.

Между нитью нихрома и трубкой расположен изолятор (2), выдерживающий высокие температуры.

Для изготовления трубки ТЭН (3) выбирают низко коррозийные металлы именно такие ТЭН наиболее часто применяются в быту и промышленности.

Стеклянные ТЭН используются в агрессивных средах, например, в лабораториях, где необходимо подогревать химические смеси.

Стеклянные трубки в нагревателях можно встретить и бытовых обогревателях, использующих инфракрасное излучение. Керамические трубки в нагревателях применяются крайне редко.

Диаметр трубок может быть разным, но применение нашли трубки диаметром от шести до двадцати четырех миллиметров.

Изолятор должен обладать высокими изоляционными свойствами и одновременно быть эффективным для передачи тепла от нагревателя к трубке.

Электропитание ТЭН осуществляется с помощью клемм (4) расположенных на изолирующих вставках (5).

Клеммы могут быть расположены как с одного конца, так и с двух концов ТЭН. Некоторые виды ТЭН оснащаются встроенным предохранителем. Такие нагреватели используются в стиральных и посудомоечных машинах.

Основные типы ТЭНов и их назначение

Тэны чаще всего классифицируются по виду и основному применению, различают:

1. ТЭН для обогрева воздуха

Температура таких ТЭНов достигает 450 градусов по Цельсию. Такие трубчатые электронагреватели используются для обогрева воздуха промышленных и бытовых помещений.

Они являются основой конвекторов, воздушных тепловых завес, различных сушильных камер. Подобные электронагреватели изготавливаются с гладкими трубками и с трубками, у которых есть ребра.

Ребра у таких тепло электронагревателей производятся из стальной ленты, крепящейся к трубке по спирали. Применение ребер увеличивает площадь поверхности ТЭН и поэтому нагрузка на нить нагрева ТЭН снижается почти в три раза, что в свою очередь, увеличивает срок службы.

2. ТЭН для воды

Такие тепло электронагреватели используются в бойлерах, стиральных машинах. В таких агрегатах вода может нагреваться до ста градусов по Цельсию.  

Для больших объемов воды, где требуется большая мощность нагрева, применяют блочные ТЭН.

Кстати, довольно подробно мы уже описывали как подключать ТЭНы электрокотла.

Часто в электронагревателях используют терморегулятор. Он отключает электронагреватель от сети питания при нагреве воды до нужной температуры. При остывании воды терморегулятор снова подключает электропитание ТЭН для нагрева.

3. Гибкие ТЭНы

Они находят применение в пресс-формах и горячеканальных системах. Они очень удобны, когда требуется придать форму контура горячеканальных систем. Изготавливаются такие электронагреватели любых размеров.

Разновидностью гибкого электронагревателя, знакомого нам в быту, является саморегулирующийся кабель для системы «теплых полов». Такой кабель используется для отопления помещений.

4. Патронные ТЭНП

К отдельному виду можно отнести патронные ТЭНы, выводы для подключения электропитания у них расположены, чаще всего, с одной стороны. Размер таких нагревателей может достигать 350 сантиметров. Главное их отличие от остальных типов — компактный корпус, чаще всего они представляют собой гильзу их нержавеющей стали с электровыводами.

Данный тип выделяется большой удельной мощностью. Тепло от нагревателя передается как контактным методом, так и путем конвекции.

Эти тепло электронагреватели широко применяются в промышленности для разогрева масел, для нагрева различных металлических форм, смонтировав их в высверленном отверстии. Ими оборудуются агрегаты в обувной отрасли, литейном производстве, автомобильной промышленности.

Если же у вас остались вопросы о классификации трубчатых нагревателей, их строении или основных сферах применения – обязательно оставляйте их в комментариях к статье, так же приветствуются мнения, здоровая критика, либо любая дополнительная информация и личный опыт, буду рад общению.

rozetkaonline.ru

Как проверить ТЭН стиральной машины

Одна из ключевых деталей в стиральной машине это ТЭН (Трубчатый Электрический Нагреватель). Представляет он из себя металлическую трубку, внутри которой находится спираль.

Эта спираль под воздействием электрического тока нагревается. Также эта спираль имеет большое сопротивление, именно поэтому электрический ток, проходя, нагревает ее.

Между спиралью и трубкой все пространство заполнено диэлектриком с высокой теплопроводимостью.

Как вы уже поняли, ТЭН постоянно нагревается и остывает, поэтому спираль в нем изнашивается и теряет свои первоначальные свойства, а в один момент может вовсе перегореть или замкнуть на корпус.

Когда это произойдет стиральная машинка перестанет нагревать воду. Если такое случилось, то нужно незамедлительно проверить ТЭН в стиральной машине на работоспособность.

К счастью, это очень просто сделать в домашних условиях.

Как найти ТЭН в стиральной машине

ТЭН у разных стиральных машин может находиться как спереди, так и сзади. Определить где находится ТЭН в стиральной машине можно одним из следующих способов:

  • Осмотрите стиральную машину сзади, если задняя стенка большого размера, то, вероятнее всего, что ТЭН находится сзади.
  • Можно положить машинку набок и посмотреть снизу, где расположен ТЭН.
  • Ну и самый практичный и, наверное, 100% способ, это снять заднюю крышку стиральной машины, благо снимается она очень просто и посмотреть там ли находится ТЭН. Если его даже там нет, то прикрутить ее будет не слишком трудно.

Если вы определились с местоположением ТЭНа в стиральной машине, то самое время его прозвонить на целостность. Некоторые профессионалы советуют снять ТЭН перед тем как прозванивать, но мы лично не видим в этом смысла. Нам кажется, что лучше сначала прозвонить нагреватель и убедиться, что он не исправен, а уже потом снимать его и менять на новый.

Читайте также:  Изоляция линий электропередачи

Поэтому снимать мы его не будем, а просто открутим от него провода. Для этого воспользуйтесь ключом или отверткой и открутить гайки, прижимающие провода.

Рассчитываем сопротивление ТЭНа

Чтобы проверить ТЭН на работоспособность нужно знать, как его прозванивать и на какие данные нам ориентироваться. Поэтому, перед тем как начать проверять водонагреватель, нам нужно сначала рассчитать его нормальное сопротивление.

Для расчета сопротивления нам понадобятся следующие данные:

  • U – напряжение, подаваемое на нагреватель. У нас оно равно напряжению бытовой сети, т. е. 220 В.
  • P – мощность самого ТЭНа. Для определения этого параметра загляните в инструкцию от стиральной машины и найдите там мощность прибора. Либо вы можете найти в интернете свою стиральную машинку по модели и узнать мощность там.

Далее по формуле R=U²/P мы получаем сопротивление нагревателя в его рабочем состоянии в Ом-ах. Именно эту цифру нам и должен показать мультиметр при прозвоне ТЭНа. Но для начала давайте разберем на примере, как правильно рассчитать сопротивление.

Допустим, что мы посмотрели в инструкции к стиралке, что мощность ТЭНа составляет 2 Кв или 1800 Вт.Считаем по формуле: R=220²/1800=26,8 Ом. Т. е. сопротивление нашего рабочего ТЭНа должно составлять 26,8 Ом.

Запомним эту цифру и отправляемся проверять сам нагреватель.

Как прозвонить ТЭН в стиральной машине

Перед тем, как начать проверку ТЭНа, убедитесь, что прибор отсоединен от электросети и обесточен.

Снимите все провода, подходящие к ТЭНу. После этого переведите мультиметр в режим измерения сопротивления в Ом-ах на отметку 200 Ом и приложите его концы к клеммам нагревателя.

  • На дисплее мультиметра должна высветиться цифра близкая к расчетной, в нашем случае это примерно 26 Ом. В этом случае ТЭН исправен.
  • Если на дисплее мультиметра высвечивается цифра 1 – это значит, что внутри нагревателя обрыв, и он требует замены.
  • Если на дисплее вы увидите цифру близкую к 0, это значит, что внутри ТЭНа замыкание, и он также неисправен.

Допустим, что ваш ТЭН показал «правильное» сопротивление, и, значит, спираль внутри него не нарушена. Но на этом проверка трубчатого нагревателя не заканчивается и нужно еще кое-что проверить, а именно:

Проверка ТЭНа на пробой на корпус

Возможно, что сама спираль и исправна, но неисправен диэлектрик, который находится в пространстве между ней и трубкой и при прохождении электричества, ток может уходить на корпус стиральной машинки, что очень опасно. Из-за такой поломки могут даже возникать искры под стиральной машиной.

Для проверки нагревателя на пробой на корпус переведите мультиметр в режим прозвонки, в таком режиме если замкнуть оба провода прибора между собой, мультиметр издаст писк и загореться индикатор.

Дальше касаемся одним концом мультиметра клеммы ТЭНа, а вторым его корпуса или можно клеммы заземления.Если мультиметр запищал, то значит ваш ТЭН пробит на корпус и требует замены.

Таким нехитрым способом вы можете прозвонить водонагреватель не только в стиральной машине, но и в чайнике или любом другом приборе.

2stiralki.ru

Источник: https://xn—-7sbeb3bupph.xn--p1ai/mocshnost/kak-opredelit-mocshnost-tena-po-soprotivleniyu.html

Расчет мощности для нагрева воды ТЭНом

Определение технических параметров приборов и расчёт нагрева воды – мощности нагревателя, змеевика, количества тепла и расхода энергии для нагрева воды – зависит от типа устройства электроводонагревателей, которые бывают накопительными и проточными.

Общие данные, необходимые для вычислений

Чем мощнее электрообогреватель, тем быстрее он подогревает заданное количество воды. Поэтому приборы по этому параметру подбирается в соответствии с задачами, необходимым объёмом и допустимым временем ожидания.

Так, например, нагрев до 60°С  15 литров с нагревателем в 1,5 кВт займёт около полутора часов.

Однако для больших объёмов (например, для наполнения 100-литровой ванны) при разумном времени ожидания (до 3 часов) для доведения жидкости до комфортной температуры понадобится устройство на 3 кВт мощнее.

Для полноценного вычисления расчётной мощности  необходимо учесть ряд параметров:

  1. Рабочий ресурс бытовой электросети.
    Проблема «выбивания пробок» особенно актуально стоит в домах вторичного жилфонда. Некоторые жильцы, столкнувшись с ней (например, при установке электрических радиаторов), решали вопрос добавлением отдельного кабеля, усилением проводки. Однако более универсальный рецепт – покупка водонагревателя со средним или низким энергопотреблением (чаще это приборы накопительного типа). Разница между количеством киловатт бытовой электросети и совокупной мощностью всех домашних электроприборов даст значение оптимальной мощности водонагревателя, к которому нужно стремиться.
  2. Соотношение мощности ТЭНа (нагревательного элемента) и объёма бака.
    Параметр, более важный для устройств накопительного типа, в которых вода расходуется постепенно, и критичной становится скорость её остывания. Чтобы 1-киловаттный водонагреватель не покупали со 100-литровыми баками, производители приводят ориентировочную таблицу, где 1-киловаттный прибор предназначен на 15 литров, 1,5 кВт – на 50, 2 кВт – на 50-100, а 5 кВт – на 200-литровый бак.
  3. Скорость водорасхода в минуту.
    Параметр имеет большее значение для проточных водонагревателей. В обиходе мощностные показатели такого нагревательного устройства (с учётом максимальной ресурсозатратности) рассчитываютсяпутём умножения на два количества литров ворорасхода в минуту. То есть, если на проточное мытьё посуды в среднем тратится 4 л/мин., то ТЭН должен быть 8 кВт. Если при приёме душа расходуется 8 л/мин., то необходим 16-киловаттныйТЭН. Вычисления усложняет то, что в квартире используются сразу 2 (а иногда и 3) точки водозабора. В этом случае, рекомендуется в вычислениях получившуюся величину умножать в полтора раза.

Накопительные водонагреватели (бойлеры)

Без физико-математических формул бытовой расчёт описывается следующим образом: за 1 час 1 кВт нагревает 860 литров на 1 К. Для более точного определения времени нагревания, мощностных характеристик, объёма используется универсальная формула, из которой потом выводятся остальные результаты:

Эта формула состоит из нескольких и отражает целый ряд параметров, учитывая при этом фактор теплопотерь. (При малых мощностных характеристиках и большом объёме этот фактор становится более существенным, однако в бытовых нагревателях этим учётным значением чаще пренебрегают):

Nfull – мощностные характеристики нагревательного элемента,

Qc – теплопотери водонагревательной ёмкости.

  1. c= Q/m*(tк-tн)
    • С – удельная теплоёмкость,
    • Q – количество теплоты,
    • m – масса в килограммах (либо объём в литрах),
    • tк  и tн  (в °С) – конечная и начальная температуры.
  2. N=Q/t
    • N – мощностные характеристики нагрева.
    • t — время нагревания в секундах.
  3. N = Nfull — (1000/24)*Qc

Упрощенные формулы с постоянным коэффициентом:

  • Расчёт мощности ТЭНа для нагрева воды нужной температуры:W= 0,00117*V*(tк-tн)/T
  • Определение времени,  необходимого для нагревания воды в водонагревателе:T= 0,00117*V*(tк-tн)/W

Составляющие формул:

  • W (в кВТ) –  мощностная характеристика ТЭНов (нагревательного элемента),
  • Т (в часах) – время нагрева воды,
  • V (в литрах) – объем бака,
  • tк  и tн  (в °С) – конечная и начальная температуры (конечная – обычно 60°C).

Часто объём приравнивают к массе (m). Тогда определение мощности ТЭНа будет производиться по формуле: W= 0,00117*m*(tк-tн)/T. Формулы считаются упрощёнными, ещё и потому что в них не учитывается:

  • фактическая мощность электросети,
  • температура окружающей среды,
  • конструктивные особенности и потенциальные теплопотери бака,
  • рекомендации некоторых производителей, относительно tн (порядка 5-8 °С летом и 15-18 °С – зимой).

При покупке устройства надо принимать во вниание, что относительно низкие мощностные характеристики накопительных водонагревателей по сравнению с проточными ещё не гарантируют финансовую экономию.

Накопительные меньше «забирают», но из-за того, что работают дольше, больше и расходуют.

Для финансовой экономии более надёжной стратегией будет общее снижение водопотребления за счёт установки различного вида экономителей (http://water-save.com/) и строгий учёт водорасхода.

Проточные водонагреватели

В расчете количества тепла для нагрева проточной воды надо учитывать разницу в стандартах напряжения России (220 В) и Европы (230 В), так как значительная часть электроводонагревателей изготовляется западноевропейскими компаниями. Благодаря этой разнице номинальный показатель в 10 кВт в таком приборе при подключении к российской сети в 220В будет на 8,5% меньше – 9,15.

Максимальный гидропоток V (в литрах за минуту) с заданными мощностными характеристиками W (в киловаттах) рассчитывается по формуле: V= 14,3*(W/t2-t1), в которой t1 и t2– температуры на входе в нагреватель и в результате подогрева соответственно.

Ориентировочные мощностные характеристики электроводонагревателей применительно к бытовым потребностям (в киловаттах):

  • 4−6 –  только для мытья рук и посуды,
  • 6−8 – для принятия душа,
  • 10−15 – для мойки и душа,
  • 15−20 – для полного водоснабжения квартиры или частного дома.

Выбор затрудняет то, что нагреватели выпускаются в двух вариантах подключения: к однофазной (220 В) и трёхфазной (380 В) сети. Однако нагреватели для однофазной сети, как правило, не выпускаются выше 10 киловатт.

Читайте также:  Электрические регуляторы косвенного действия

Вычисления для бассейнов

Расчет нагрева воды в бассейне складывается из вычисления параметров электронагревателя и объёма, который необходимо подогреть.

В таблице указано приблизительное время в часах, за которое температура поднимается с 10 °С до 28 °С.

При этом существенную роль в конечных вычислениях играет площадь водяного «зеркала», температура окружающей среды, степень открытости/ закрытости места расположения бассейна.

Читайте далее

Оставьте комментарий и вступите в дискуссию

Источник: https://hitropop.com/voda/uchet/raschet-nagreva-vody-tehnom.html

Расчет тэна

Исходные данные

P1 = 1500 Вт;

U = 220 В;

Материал трубки тэна – для греющей камеры – обычная сталь; для парогенератора – обычная сталь с защитным покрытием;

Диаметр трубки тэна: до опрессовки D= 16 мм; после опрессовки Dт = 12,3 мм (0,0123 м);

Материал спирали – нихром (удельное сопротивление ρ = 1,1ּ10–6 Омּм).

Тэн греющей камеры

Принимаем длину участка тэна Lк (рис. 8.48 а), на котором находится контактный стержень 30 мм, а радиус изгиба трубки тэна – 25 мм. При этом расстояние между осями трубок (s) составит 50 мм.

Для обеспечения равномерного нагрева теплоносителя тэны в греющей камере необходимо разместить по всей ее длине.

Тогда с учетом зазора (примерно 10 мм) и выступающего внутрь греющей камеры контактного стержня на 20 мм длина активной части тэна (Lа) составит

Lа = [Арк – 10 – 20 – (s/2 + Dт/2)]ּ 2 + πּ s/2 = [590 – 10 – 20 – (25 + 6,15)]ּ 2 + 3,14ּ 25 = 1192 мм (1,192 м).

Активная длина тэна до опрессовки

L= Lа/1,15 = 1192 : 1,15 = 1037 мм.

Действительная удельная поверхностная мощность на тэне определится по формуле (4.38)

ωт === 3,26ּ104 Вт/м2

Полученное значение удельной поверхностной мощности на трубке тэна значительно меньше допустимого значения 4,5ּ 104 Вт/м2 (табл. 4.4).

Однако по результатам исследований, проведенных на кафедре торгово-технологического оборудования РЭА им. Г.В.

Плеханова, для конвективных аппаратов подобного типа рекомендуемая удельная поверхностная мощность на трубке тэна греющей камеры не должна превышать 1,2ּ 104 Вт/м2 (1,2 Вт/см2).

Для обеспечения рекомендуемой удельной поверхностной мощности на трубке тэна следует увеличить площадь его теплоотдающей поверхности за счет оребрения. Необходимая площадь оребрения (Sр) составит

Sр =– πּDтּLа =– 3,14ּ1,23ּ119,2 = 790 см2.

По конструктивным соображениям принимаем ребра размерами 2ּ4,5 см. Откуда площадь одного ребра за вычетом трубки тэна составит 15,6 см2, а число ребер на тэне 790/15,6 = 51 шт. Принимаем к установке 52 ребра на двух прямолинейных участках длиной по 520 мм с шагом 20 мм. Причем их равномерная установка на разных тэнах осуществляется со смещением относительно друг друга на 10 мм.

Общая длина трубки тэна после опрессовки определяемая по формуле (4.39) будет равна

L = 1192 + 2ּ30= 1252 мм.

До опрессовки

L0 = L/1,15 = 1252 : 1,15 = 1088,7 мм.

Диаметр проволоки спирали (d) определяется по формуле (4.36)

d === 0,68ּ10–3 м,

где ωс – удельная поверхностная мощность на проволоке спирали, Вт/м2 (Для тэнов работающих в воздухе движущемся со скоростью мене 6 м/с допускается до 7ּ 104 Вт/м2. Принимаем 5ּ104 Вт/м2).

Полученный диаметр по табл. 4.5 округляется до ближайшего стандартного (dст) диаметра нахромовой проволоки – 0,7 мм (0,7ּ10–3 м) и определяется ее длина (l). Для ее нахождения в начале определим сопротивление проволоки спирали до опрессовки

R0 = 1,3ּR = 1,3ּ32,26 = 41,94 Ом

где R – сопротивление проволоки спирали после опрессовки, Ом (R = U2/P1 = 2202/1500 = 32,26 Ом).

Длина проволоки спирали определяется по следующей формуле

l === 14,66 м.

Реальная удельная поверхностная мощность на проволоке спирали (ωс) составит

ωс === 4,65ּ104 Вт/м2.

Средний диаметр витка спирали:

= D– δт – δиз – d = 16 – 2– 4 – 0,7 = 9,3 мм,

где δт – сумма толщин стенок трубки, δт = 2ּ1 = 2 мм;

δиз – сумма толщин слоев изоляции, δиз = 2ּ2 = 4 мм;

dст – диаметр проволоки спирали, dст = 0,7 мм.

Длина витка спирали:

lв = πּ= 3,14ּ9,3 = 29,2 мм.

Число витков:

nв === 502.

Расстояние между витками:

а === 1,35 мм.

Поскольку а>d, то расчет выполнен верно и конструктивные параметры нагревателя соответствуют предъявляемым требованиям.

Тэн парогенератора

Принимаем длину участка тэна Lк (рис. 8.48 б), на котором находится контактный стержень 50 мм, а радиус изгиба трубки тэна – 40 мм.

При этом расстояние между осями трубок (s) составит 80 мм, а ширина парогенератора Вп = 80 + 12,3 + 20 = 112 мм.

С учетом зазора по длине между тэном и стенкой парогенератора (10 мм) и выступающего внутрь парогенератора контактного стержня на 30 мм длина активной части тэна (Lа) составит

Lа = [Ап – 10 – 30 – (s/2 + Dт/2)]ּ 2 + πּ s/2 = [350 – 10 – 30 – (40 + 6,15)]ּ 2 + 3,14ּ 40 = 673,3 мм (0,673 м).

Тогда удельная поверхностная мощность на тэне определится по формуле (4.38)

ωт ===5,77 104 Вт/м2

Полученное значение удельной поверхностной мощности на трубке тэна значительно меньше допустимого значения 14ּ 104 Вт/м2 (табл. 4.4), что позволяет уменьшить Lа примерно в 2 раза. Принимаем Lа = 400 мм. Тогда длина парогенератора составит Ап = 225 мм.

Активная длина тэна до опрессовки составит

L= Lа/1,15 = 400 : 1,15 = 348 мм.

Общая длина трубки тэна после опрессовки определяемая по формуле (4.39) будет равна

L = 400 + 2ּ50= 500 мм.

До опрессовки

L0 = L/1,15 = 500 : 1,15 = 434,8 мм.

Диаметр проволоки спирали (d) определяется по формуле (4.36)

d === 0,47ּ10–3 м,

где ωс – удельная поверхностная мощность на проволоке спирали, Вт/м2 (Для тэнов работающих в воде допускается до 25ּ 104 Вт/м2. Принимаем 15ּ104 Вт/м2).

Полученный диаметр по табл. 4.5 округляется до ближайшего стандартного (dст) диаметра нахромовой проволоки – 0,5 мм (0,5ּ10–3 м) и определяется ее длина (l). Для ее нахождения в начале определим сопротивление проволоки спирали до опрессовки

R0 = 1,3ּR = 1,3ּ32,26 = 41,94 Ом

где R – сопротивление проволоки спирали после опрессовки, Ом (R = U2/P1 = 2202/1500 = 32,26 Ом).

Длина проволоки спирали определяется по следующей формуле

l === 7,48 м.

Реальная удельная поверхностная мощность на проволоке спирали (ωс) составит

ωс === 12,77ּ104 Вт/м2.

Средний диаметр витка спирали:

= D– δт – δиз – dст = 16 – 2 – 4 – 0,5 = 9,5 мм,

где δт – сумма толщин стенок трубки, δт = 2ּ1 = 2 мм;

δиз – сумма толщин слоев изоляции, δиз = 2ּ2 = 4 мм;

dст – диаметр проволоки спирали, dст = 0,5 мм.

Длина витка спирали:

lв = πּ= 3,14ּ9,5 = 29,83 мм.

Число витков:

nв === 251.

Расстояние между витками:

а === 0,88 мм.

Поскольку а > d, то расчет выполнен верно и конструктивные параметры нагревателя соответствуют предъявляемым требованиям.

Источник: https://studlib.info/proizvodstvo/3257966-raschet-tyena/

Расчёт мощности и подключение ТЭНов к электросети

Но, при нагреве на электроплите, много энергии расходуется на бесполезный нагрев самой плиты, а также  излучается во внешнюю среду, от нагревательного элемента, не совершая при этом, полезной работы.

Эта, понапрасну затрачиваемая энергия, может достигать приличных значений — до 30-50 %, от общей затраченной мощности на нагрев куба. Поэтому использование обычных электроплит, является нерациональным с точки зрения экономии. Ведь за каждый лишний киловатт энергии, приходится платить.

Наиболее эффективно использовать врезанные в испарительную емкость эл. ТЭНы. При таком исполнении, вся энергия расходуется только на нагрев куба  + излучение от его стенок вовне. Стенки куба, для уменьшения тепловых потерь, необходимо теплоизолировать.

Ведь затраты на излучение тепла, от стенок самого куба могут так же, составлять до 20 и более процентов, от всей затрачиваемой мощности, в зависимости от его размеров. Для использования в качестве нагревательных элементов врезанных в емкость, вполне подходят ТЭНы, от бытовых эл.

чайников, или другие подходящие по размерам. Мощность таких ТЭНов, бывает разная. Наиболее часто применяются ТЭНы с выбитой на корпусе мощностью 1.0 кВт и 1.25 кВт. Но есть и другие.

Поэтому мощность 1-го ТЭНа, может не соответствовать по параметрам, для нагрева куба и быть больше или меньше.

В таких случаях, для получения необходимой мощности нагрева,  можно использовать несколько ТЭНов, соединенных последовательно или последовательно-параллельно. Коммутируя различные комбинации соединения ТЭНов, переключателем от бытовой  эл.

плиты, можно получать различную мощность. Например имея восемь врезанных ТЭНов, по 1.25 кВт каждый, в зависимости от комбинации включения, можно получить следующую мощность.

  1. 625 Вт
  2. 933 Вт
  3. 1,25 кВт
  4. 1,6 кВт
  5. 1,8 кВт
  6. 2,5 кВт

Такого диапазона вполне хватит для регулировки и поддержания нужной температуры при перегонке и ректификации. Но можно получить и иную мощность, добавив количество режимов переключения и используя различные комбинации включения.

Читайте также:  Защиты минимального и максимального напряжения

Последовательное соединение  2-х ТЭНов по 1.25 кВт и подключение их к сети 220В, в сумме дает 625 Вт. Параллельное соединение, в сумме дает 2.5 кВт.

Рассчитать можно по следующей формуле.

Мы знаем напряжение, действующее в сети, это 220В. Далее мы так же знаем мощность ТЭН, выбитую на его поверхности допустим это 1,25 кВт, значит, нам нужно узнать силу тока, протекающую в этой цепи. Силу тока, зная напряжение и мощность, узнаем из следующей формулы.

Сила тока = мощность, деленная на напряжение в сети.

Записывается она так: I = P / U.

Где I — сила тока в амперах.

P — мощность в ваттах.

U — напряжение в вольтах.

При подсчете нужно мощность, указанную на корпусе ТЭН в кВт, перевести в  ватты.

1,25 кВт = 1250Вт.  Подставляем известные значения в эту формулу и получаем силу тока.

I = 1250Вт / 220 = 5,681 А

Далее зная силу тока подсчитываем сопротивление ТЭНа, по следующей формуле.

R = U / I, где

R — сопротивление в Омах

U — напряжение в вольтах

I — сила тока в амперах

Подставляем известные значения в формулу и узнаем сопротивление 1 ТЭНа.

R = 220 / 5.681 = 38,725 Ом.

Далее подсчитываем общее сопротивление всех последовательно соединенных ТЭНов. Общее сопротивление равно сумме всех сопротивлений, соединенных последовательно ТЭНов

Rобщ = R1+ R2 + R3 и т.д.

Таким образом, два последовательно соединенных ТЭНа, имеют сопротивление равное 77,45 Ом. Теперь нетрудно подсчитать мощность выделяемую этими двумя ТЭНами.

P = U2 / R где,

P — мощность в ваттах

U2 — напряжение в квадрате, в вольтах

R — общее сопротивление всех посл. соед. ТЭНов

P = 624,919 Вт, округляем до значения 625 Вт.

Далее при необходимости можно подсчитать мощность любого количества последовательно соединенных ТЭНов, или ориентироваться на таблицу.

В таблице 1.1 приведены значения для последовательного соединения ТЭНов.

Таблица 1.1

Кол-во ТЭН Мощность (Вт) Сопротивление (Ом) Напряжение (В) Сила тока (А)
1 1250,000 38,725 220 5,68
Последовательное соединение
2 625 2 ТЭН = 77,45 220 2,84
3 416 3 ТЭН =1 16,175 220 1,89
4 312 4 ТЭН=154,9 220 1,42
5 250 5 ТЭН=193,625 220 1,13
6 208 6 ТЭН=232,35 220 0,94
7 178 7 ТЭН=271,075 220 0,81
8 156 8 ТЭН=309,8 220 0,71

В таблице 1.2 приведены значения для параллельного соединения ТЭНов.

Таблица 1.2

Кол-во ТЭН Мощность (Вт) Сопротивление (Ом) Напряжение (В) Сила тока (А)
Параллельное соединение
2 2500 2 ТЭН=19,3625 220 11,36
3 3750 3 ТЭН=12,9083 220 17,04
4 5000 4 ТЭН=9,68125 220 22,72
5 6250 5 ТЭН=7,7450 220 28,40
6 7500 6 ТЭН=6,45415 220 34,08
7 8750 7 ТЭН=5,5321 220 39,76
8 10000 8 ТЭН=4,840 220 45,45

Еще один немаловажный плюс, который дает последовательное соединение ТЭНов, это уменьшенный в несколько раз протекающий через них ток, и соответственно малый нагрев корпуса нагревательного элемента, тем самым не допускается пригорание браги во время перегонки и не привносит неприятного дополнительного вкуса и запаха в конечный продукт. Так же  ресурс работы ТЭНов, при таком включении, будет практически вечным.

Расчеты выполнены для ТЭНов, мощностью 1.25 кВт. Для ТЭНов другой мощности, общую мощность нужно пересчитать согласно закона Ома, пользуясь выше приведенными формулами

Источник: http://teplo-faq.net/raznoe/151-raznoe-po-teme/8713-raschyot-moshhnosti-i-podklyuchenie-tenov-k-elektroseti

ТЭНы в системе отопления

Разные виды ТЭНов

Нередко для обогрева помещений используют электроотопительные приборы. Одна из разновидностей такого отопления ТЭНы – трубчатые электронагреватели.

Что же представляет собой этот широко распространенный прибор? ТЭН – это устройство для среднетемпературного нагрева теплоносителя.

Конструктивно это тонкостенная металлическая трубка с помещенной внутрь спиралью, которая изготовлена из материала высокого сопротивления — нихрома. Концы спирали выходят наружу в виде контактного стержня, герметизируются и служат для подключения к электросети.

Сама трубка изготавливается из стали, углеродистой или нержавеющей. После помещения внутрь и центровки спирали, трубку заполняют специальным теплоносителем – периклазом и герметизируют. Находясь под высоким давлением, периклаз фиксирует спираль по оси и после этого ТЭН изгибают и придают ему необходимую форму в зависимости от модели.

Независимо от того, как именно будут использоваться ТЭНы – в котле отопления на твердом топливе или в инфракрасном обогревателе – существуют определенные правила установки и эксплуатации нагревателей такого типа.

При этом использовать электрические тэны можно в самых разных целях: для обогрева гаража, отопления дома, для установки в котлы отопления или в радиаторы.

Рассмотрим более подробно способы использования ТЭНов для отопления.

Устройство трубчатого электронагревателя

Разновидности  ТЭНов  для обогрева

Электронагреватели трубчатого типа различают по нескольким параметрам:

  • По типу рабочей среды: газовые (или воздушные) и водяные;
  • По типу нагревательной поверхности: ленточные, стержневые, оребренные, и, самые распространенные – трубчатые;
  • По способу использования: выпускают ТЭНы для котлов отопления, бойлеров, духовок, электроплит, радиаторов, стиральных машин и т.п.;
  • По мощности на единицу поверхности (номинальной и максимальной): в продаже есть модели от 15 Вт до 15 КВт на единицу;
  • По дополнительным опциям; наличие терморегуляторов и датчиков автоматического отключения в случае перегрева.

Расчет мощности приборов

Для того чтобы не переплачивать за электроэнергию и предотвратить аварийные ситуации необходимо перед установкой ТЭНов в систему отопления рассчитать необходимую мощность. И сделать это «на глазок» не получится. Расчеты производят исходя из того, что для обогрева 10 кв.м. помещения требуется 1 КВт тепловой энергии. Формула расчета мощности нагревательного прибора следующая:

Рм=0.0011*м(Т2-Т1)/t,

где Pм — расчетная мощность, м- масса теплоносителя, Т1-начальная  температура теплоносителя до нагрева, Т2- температура теплоносителя после нагрева и t-время, необходимое для нагрева системы до оптимальной температуры Т2.

Рассмотрим расчет мощности на примере алюминиевого радиатора в 6 секций. Объем теплоносителя такого радиатора около 3 литров (точно указано в паспорте модели). Допустим нам нужно нагреть радиатор, подсоединив тэн в батарею отопления, за 10 минут с 20 градусов до 80. Подставляем значения в формулу:

Рм=0.0066*3(80-20)/10 = 1,118 , то есть мощность ТЭНа должна быть около 1-1,2 КВт.

Установка ТЭНа производится в нижнюю секцию батарей отопления

Однако это действительно лишь в том случае, если в качестве теплоносителя используется вода.

Если же необходимо произвести расчеты для масла или антифриза, то применяют поправочный коэффициент, который составляет около 1,5.

Проще говоря, мощность ТЭНов для нагрева масляных обогревателей должна быть увеличена примерно в полтора раза. В противном случае увеличится расчетное время достижения оптимальной температуры.

Плюсы и минусы использования ТЭНов для отопления дома

Основной минус такого способа обогрева, как и в случае с прочими электроприборами, это стоимость эксплуатационных расходов.

Электроэнергия по-прежнему самый дорогой источник тепла (если, конечно, у вас нет возможности использовать бесплатную энергию солнца или ветра, и вы подключены к магистральной электросети).

Еще один минус – невозможность ремонта в случае выхода из строя спирали. Однако есть и некоторые положительные моменты, которые в некоторых случаях могут стать приоритетными.

  • Экологичность отопительной системы. При использовании электронагревательных приборов нет нужды запасать и хранить какое-бы то ни было топливо, и нет вредных продуктов горения, которые попадают в окружающую среду;
  • Возможность автономной установки отопительной системы при отсутствии доступа к другим тепловым ресурсам (например, газу);
  • Малые габариты и большой выбор моделей по мощности и функционалу;
  • Возможность автоматизации процесса отопления: установка ТЭНов с терморегулятором;
  • Невысокие расходы на покупку и установку. Есть модели, стоимость на которые не превышает 1000 руб. А установку ТЭНов в радиаторы отопления можно произвести самостоятельно.

И напоследок несколько советов по самостоятельной установке трубчатых электронагревателей.  Как же правильно врезать тэн в систему отопления? Прежде всего, нужно правильно выбрать модель, измерив диаметры радиаторов, куда предполагается устанавливать ТЭН и произведя расчеты мощности.

Затем внимательно прочитать инструкцию к прибору, где должно быть указано требуется ли дополнительная герметизация или нет. Это один из важнейших моментов, поскольку контакт проводника с теплопроводящей жидкостью приведет к тому, что ваши радиаторы окажутся под напряжением, а это опасно для жильцов.

Если производитель указывает на необходимость дополнительной герметизации, то ее обязательно нужно сделать. Кроме того, недопустимо использование приборов электрообогрева без заземления.

Расположение ТЭНов в чугунной батарее отопления

Установка ТЭНов в чугунные батареи отопления имеет ряд особенностей. Связаны они с диаметром  патрубка и направлением резьбы.

В целом порядок установки отопление ТЭНами в существующую систему таков: отключить систему отопления от источника тепла, слить воду, установить ТЭН, залить теплоноситель, проверить работоспособность системы.

При использовании в системе радиаторов отопления ТЭНов  с терморегуляторами необходимо также проверить их работоспособность после монтажа. Желательно также установить датчики воды и проверить углы наклона радиаторов. Поскольку воздушные пробки могут существенно повлиять на работу всей системы и вывести из строя ТЭН.

Источник: https://utepleniedoma.com/otoplenie/otopitelnoe-oborudovanie/teny-dlya-otopleniya

Ссылка на основную публикацию