Пьезоэлектрический эффект и его применение в технике

Пьезоэлектрический эффект, применение в науке и технике

Введение.

Пьезоэлектрический эффект (пьезоэффект) состоит в том, что при механических деформации некоторых кристаллов в определённых направлениях на их гранях появляются электрические заряды противоположных знаков.

Пьезоэффект наблюдается в кварце, турмалине, сегнетовой соли, титанате бария, цинковой обманке и других веществах. Пьезоэлектрический эффект в кварце происходит вдоль электрических осей X1 , X2 , X3 кристалла, перпендикулярных к его оптической оси Z.

Обращение направления деформации кристалла изменяет знаки зарядов на поверхностях на противоположные. Обратный пьезоэлектрический эффект заключается в изменении линейных размеров некоторых кристаллов под действием электрического поля.

Изменение направления электрического поля вызывает изменение характера деформаций на противоположный. Этот эффект имеет большое значение для получения ультразвука (см. Пьезоэлектрические излучатели).

Пьезоэлектрики – это такие кристаллы, в которых под влиянием однородной деформации возникают дипольный момент, а значит, и электрическое поле, пропорциональные деформации. Наличие пьезоэлектрических свойств тесно связано с симметрией кристалла.

Пьезоэлектрический эффект.

Пьезоэлектрический эффект существует в целом ряде полупроводников – CdS, Zn0, GaAs, InSb, Те и др.

Большинство опытов, в особенности на первом этапе, было проведено на CdS – этот полупроводник является довольно сильным пьезоэлектриком и в то же время фотопроводником (т. е.

изменяет свою проводи­мость при освещении). Поэтому в нем, как уже говорилось, легко можно отделять электронные эффекты.

Если в пьезоэлектрике распространяется звук, т. е. волна деформации, то она сопровождается электрическими полями, обладающими пространственной и вре­менной периодичностью звуковой волны. Эти поля продольные, т. е. параллельные направлению распространения звука.

Можно сказать, что в пьезоэлектриках всякая звуковая волна сопровождается волной продольного электрического поля (его будем называть пьезоэлектрическим полем).

В качестве оценки напряженности этих полей можно привести следующую цифру: при распространении звука в таком сильном пьезоэлектрике, как CdS, при плотности потока звуковой энергии S порядка 1 Вт/см2 амплитуда напряженности переменного поля может достигать нескольких сотен вольт на сантиметр.

Выясним теперь, как влияет пьезоэлектрический эффект на распространение звука в пьезодиэлектриках.

Пусть продольный или поперечный звук распространяется в пьезодиэлектрике вдоль оси симметрии кристалла, которую назовем осью ОХ.

Деформация в такой волне характеризуется величиной du/ dx, где и{х) – смещение точки кристалла в звуковой волне. В непьезоэлектрическом кристалле при такой деформации воз­никает упругое напряжение.

А что будет с электронами в полупроводнике? Они перераспределятся в пространстве, стремясь стечь с потенциальных «горбов» и заполнить потенциальные «ямы». При этом уменьшится первоначальный потенциал (φ0 , или, как говорят, произойдет его экранирование электронами проводимости).

Поэтому первый вопрос, который следует решить: как перераспределяются электроны в поле потенциала, и каким образом они его будут экранировать? Для решения этого вопроса следует выяснить, как нужно описывать движение электрона в поле звуковой волны.

Это существенно зависит от того, какова величина соотношения между длиной звуковой волны 2л/q и длиной l свободного пробега электронов какова величина параметра ql. Этот параметр играет центральную роль в теории акустических свойств проводников; при различных его значениях электроны по-разному взаимодействуют со звуком.

Обычно в пьезоэлектрических полупроводниках ql «1, поэтому пока ограничимся рассмотрением этого случая. В чистых металлах при низких температурах может выполняться противоположное неравенство. Об этом пойдет речь в следующей главе.

Пьезоэлектрический эффект, применение в науке и технике

Патент США N3239283. Американские изобретатели Дж.Броз и В.Лаубердорфер разработали конструкцию подшипника, в котором трение уничтожается вибрацией, но для ее создания не требуется специальных механизмов. Втулки подшипника изготовляются из пьезоэлектрического материала. Ток заставляет пьезоэлектрик сжиматься и расширяться, создавая вибрацию, уничтожающую трение.

Установка на реактивных самолетах пьезопреобразователей позволяет экономить почти треть топлива, которое шло на выработку электроэнергии, следовательно, позволяет увеличить дальность полета. Здесь в электроэнергию непосредственно превращаются колебания и вибрация фюзеляжа и крыльев.

Фирма “Филипс” успешно разрабатывает идею пьезоэлектрического привода для механизмов малой мощности. В частности, ею создан светофор, батареи которого заряжаются от шума автомобилей на перекрестке.

Поговаривают о создании звукоизолирующих перегородок многоквартирных домок из пьезоэлектриков. Здесь двойной эффект и поглощение шума, и выработка электроэнергии, скажем, для обогрева квартир.

Пьезоэлектрическая струйная печать

Пьезоэлектрические струйные головки для принтеров были разработаны в семидесятых годах.

В большинстве таких принтеров избыточное давление в камере с чернилами создается с помощью диска из пьезоэлектрика, который изменяет свою форму (выгибается) при подведении к нему электрического напряжения.

Выгнувшись, диск, который служит одной из стенок камеры с чернилами, уменьшает ее объем. Под действием избыточного давления жидкие чернила вылетают из сопла в виде капли.

Пионер пьезоэлектрической технологии – фирма Epson – не смогла успешно соревноваться в объеме продаж со своими конкурентами Canon и Hewlett-Packard из-за сравнительно высокой технологической стоимости пьезоэлектрических печатающих головок – они дороже и сложнее, чем пузырьковые печатающие головки.

Источник: http://MirZnanii.com/a/320961/pezoelektricheskiy-effekt-primenenie-v-nauke-i-tekhnike

Что такое пьезоэлектрический эффект?

Пьезоэлектричество было открыто в 1880 году братьями Жаком и Пьером Кюри. Они заметили, что при давлении на кварц или отдельные кристаллы образуется электрический заряд. Позже это явление получило название пьезоэлектрического эффекта.

Вскоре братья Кюри открыли обратный пьезоэлектрический эффект. Это было после приложения к материалу или кристаллу электрического поля, которое привело к механической деформации объекта.

Термин пьезоэлектричество происходит от греческого слова «пьезо», что обозначает сжатие. Стоит отметить, что от греческого слова «янтарь» происходит слово «электричество». Янтарь тоже может быть источником электрической энергии.

Многие современные электронные устройства используют пьезоэлектрический эффект для своей работы.

Например, при использовании некоторых устройств распознавания звука микрофоны, которые они используют, работают на основе упомянутого выше эффекта.

Пьезоэлектрический кристалл превращает энергию вашего голоса в электрический сигнал, с которым могут работать смартфоны, компьютеры и другие электронные устройства.

Создание некоторых продвинутых технологий тоже стало возможно благодаря пьезоэлектрическому эффекту. Например, мощные гидролокаторы используют маленькие чувствительные микрофоны и керамический звуковой датчик, созданные на основе пьезоэлектрического эффекта.

 Прямой пьезоэлектрический эффект

Пьезоэлектрический материал (керамический или кристаллический) помещают между двумя металлическими пластинами. Для генерации электрического заряда необходимо приложить механическое усилие (сжать или разжать). При приложении механического усилия на металлических пластинах начинает скапливаться электрический заряд:

Таким образом, пьезоэлектрический эффект действует как миниатюрный аккумулятор. Микрофоны, датчики давления, гидролокаторы и другие чувствительные устройства используют этот эффект для своей работы.

Обратный пьезоэлектрический эффект

Выше упоминалось, что существует и обратный пьезоэлектрический эффект. Он заключается в том, что при приложении электрического напряжения к пьезоэлектрическому кристаллу произойдет механическая деформация тела, под которой оно будет расширяться или сжиматься:

Обратный пьезоэлектрический эффект значительно помогает при разработке акустических устройств. Примером могут послужить звуковые колонки, сирены, звонки.

Преимущества таких динамиков в том, что они очень тонкие, а это делает их практически незаменимыми при использовании в мелких устройствах, например, в мобильных телефонах.

Также этот эффект часто используют медицинские ультразвуковые и гидроакустические датчики.

Пьезоэлектрические материалы

Данные материалы должны производить электрическую энергию из-за механических воздействий, таких как сжатие. Также эти материалы должны деформироваться при приложении к ним напряжения.

Данные материалы условно разделяют на две группы – кристаллы и керамические изделия. ЦТС (известный как цирконат-титанат свинца), титанат бария, ниобат лития – примеры искусственных пьезоэлектрических материалов, обладающих более ярко выраженным эффектом, чем кварц и другие природные материалы.

Давайте сравним искусственно полученный цирконат-титанат свинца ЦТС и природный элемент кварц. Итак, ЦТС способен вырабатывать гораздо большее напряжение при одинаковой деформации. Соответственно при обратном эффекте он склонен к большей деформации при одном и том же напряжении. Кварц – первый известный пьезоэлектрический материал.

ЦТС производится при высоких температурах с двух химических элементов – свинца и циркония, с добавлением химического соединения под названием титанат. Химическая формула ЦТС Pb[Zr(x)Ti(1-x)]O3.

Он широко используется для производства ультразвуковых преобразователей, керамических конденсаторов, датчиков и других электронных устройств. Он также имеет специфический диапазон различных свойств.

Впервые был изготовлен в 1952 году в Токийском технологическом институте.

Титанат бария представляет собой сегнетоэлектрический керамический материал с пьезоэлектрическими свойствами. По этой причине титанат бария использовался в качестве пьезоэлектрического материала больше, чем другие. Титанат бария был открыт в 1941 году во время Второй мировой войны и имеет химическую формулу BaTiO3.

Ниобат лития – соединение, сочетающее в себе кислород, литий и ниобий. Имеет химическую формулу LiNbO3. Как и титанат бария, является сегнетоэлектрическим керамическим материалом.

Пьезоэлектрические устройства

Гидролокатор

Гидролокатор был изобретен в 1900-х годах Льюисом Никсоном. Первоначально он использовался для обнаружения айсбергов. Однако интерес к нему очень сильно возрос в период Первой мировой войны, где он использовался для обнаружения подводных лодок. В наше время гидролокатор является распространенным прибором с большим количеством различного рода применений.

На рисунке ниже показан принцип работы гидролокатора:

А принцип работы довольно прост – передатчик, который использует обратный пьезоэлектрический эффект, посылает звуковые волны в определенном направлении. При попадании волны на объект она отражается и возвращается обратно, где ее обнаруживает приемник.

Приемник, в отличии от передатчика, использует прямой пьезоэлектрический эффект. Он преобразует возвращаемую отраженную звуковую волну в электрический сигнал и передает его в электронную систему, которая и будет производит дальнейшую обработку сигнала. Расстояние от источника сигнала до определяемого объекта вычисляется на основании временных характеристик сигналов передатчик – приемник.

Пьезоэлектрические исполнительные устройства

Ниже показана работа силового привода на  основе пьезоэлектрического эффекта:

Работа привода довольно проста – под воздействием приложенного к материалу напряжения происходит его расширение или сужение, которое и приводит привод в движение.

Например, некоторые вязальные машины используют этот эффект для своей работы благодаря его простоте и минимальному количеству вращающихся частей. Такие приводы применяются даже в некоторых видеокамерах и мобильных телефонах в качестве приводов фокусировки.

Пьезоэлектрические громкоговорители и зуммеры

Такие устройства используют обратный пьезоэлектрический эффект для создания и воспроизведения звука. При подаче напряжения к динамикам и зуммерам он начинает вибрировать и таким образом генерирует звуковые волны.

Пьезоэлектрические динамики обычно используют в будильниках или других несложных акустических системах для создания простой аудиосистемы. Эти ограничение вызваны частотой среза данных систем.

Пьезо драйверы

Пьезо драйверы могут преобразовывать низкое напряжение батареи в высокое для питания силовых пьезоэлектрических устройств. Пьезо драйверы помогают инженерам создавать большие значения синусоидального напряжения.

Ниже представлена блок схема, показывающая принцип работы пьезо драйвера:

Пьезо драйвер будет получать низкое напряжение от батареи и повышать его с помощью усилителя. Осциллятор будет подавать на вход драйвера синусоидальное напряжение малой амплитуды, которое в последующем будет повышено пьезо драйвером и отправлено на пьезо устройство.

Читайте также:  Применение автоматизированных систем коммерческого учета электроэнергии

Источник: http://elenergi.ru/chto-takoe-pezoelektricheskij-effekt.html

Пьезоэлектрический эффект, применение в науке и технике

Рейтинг 0/5 (Голосов: 0)

Введение.

Пьезоэлектрический эффект (пьезоэффект) состоит в том, что при механических деформации некоторых кристаллов в определённых направлениях на их гранях появляются электрические заряды противоположных знаков.

Пьезоэффект наблюдается в кварце, турмалине, сегнетовой соли, титанате бария, цинковой обманке и других веществах. Пьезоэлектрический эффект в кварце происходит вдоль электрических осей X1, X2, X3 кристалла, перпендикулярных к его оптической оси Z.

Обращение направления деформации кристалла изменяет знаки зарядов на поверхностях на противоположные.

Обратный пьезоэлектрический эффект заключается в изменении линейных размеров некоторых кристаллов под действием электрического поля. Изменение направления электрического поля вызывает изменение характера деформаций на противоположный. Этот эффект имеет большое значение для получения ультразвука (см. Пьезоэлектрические излучатели).

Пьезоэлектрики – это такие кристаллы, в которых под влиянием однородной деформации возникают дипольный момент, а значит, и электрическое поле, пропорциональные деформации. Наличие пьезоэлектрических свойств тесно связано с симметрией кристалла.

Пьезоэлектрический эффект.

Пьезоэлектрический эффект существует в целом ряде полупроводников – CdS,
Zn0, GaAs, InSb, Те и др.

Большинство опытов, в особенности на первом этапе, было проведено на CdS – этот полупроводник является довольно сильным пьезоэлектриком и в то же время фотопроводником (т. е.

изменяет свою проводимость при освещении). Поэтому в нем, как уже говорилось, легко можно отделять электронные эффекты.

Если в пьезоэлектрике распространяется звук, т. е. волна деформации, то она сопровождается электрическими полями, обладающими пространственной и временной периодичностью звуковой волны. Эти поля продольные, т. е. параллельные направлению распространения звука.

Можно сказать, что в пьезоэлектриках всякая звуковая волна сопровождается волной продольного электрического поля (его будем называть пьезоэлектрическим полем).

В качестве оценки напряженности этих полей можно привести следующую цифру: при распространении звука в таком сильном пьезоэлектрике, как CdS, при плотности потока звуковой энергии S порядка 1 Вт/см2 амплитуда напряженности переменного поля может достигать нескольких сотен вольт на сантиметр.

Выясним теперь, как влияет пьезоэлектрический эффект на распространение звука в пьезодиэлектриках. Пусть продольный или поперечный звук распространяется в пьезодиэлектрике вдоль оси симметрии кристалла, которую назовем осью ОХ. Деформация в такой волне характеризуется величиной du/dx, где и{х) – смещение точки кристалла в звуковой волне. В непьезоэлектрическом кристалле при такой деформации возникает упругое напряжение.

А что будет с электронами в полупроводнике? Они перераспределятся в пространстве, стремясь стечь с потенциальных «горбов» и заполнить потенциальные «ямы».

При этом уменьшится первоначальный потенциал (?0, или, как говорят, произойдет его экранирование электронами проводимости).

Поэтому первый вопрос, который следует решить: как перераспределяются электроны в поле потенциала, и каким образом они его будут экранировать?

Для решения этого вопроса следует выяснить, как нужно описывать движение электрона в поле звуковой волны. Это существенно зависит от того, какова величина соотношения между длиной звуковой волны 2л/q и длиной l свободного пробега электронов какова величина параметра ql.

Этот параметр играет центральную роль в теории акустических свойств проводников; при различных его значениях электроны по-разному взаимодействуют со звуком. Обычно в пьезоэлектрических полупроводниках ql «1, поэтому пока ограничимся рассмотрением этого случая.

В чистых металлах при низких температурах может выполняться противоположное неравенство. Об этом пойдет речь в следующей главе.

Пьезоэлектрический эффект, применение в науке и технике.

Патент США N3239283. Американские изобретатели Дж.Броз и В.Лаубердорфер разработали конструкцию подшипника, в котором трение уничтожается вибрацией, но для ее создания не требуется специальных механизмов. Втулки подшипника изготовляются из пьезоэлектрического материала.

Ток заставляет пьезоэлектрик сжиматься и расширяться, создавая вибрацию, уничтожающую трение. Установка на реактивных самолетах пьезопреобразователей позволяет экономить почти треть топлива, которое шло на выработку электроэнергии, следовательно, позволяет увеличить дальность полета.

Здесь в электроэнергию непосредственно превращаются колебания и вибрация фюзеляжа и крыльев. Фирма “Филипс” успешно разрабатывает идею пьезоэлектрического привода для механизмов малой мощности.

В частности, ею создан светофор, батареи которого заряжаются от шума автомобилей на перекрестке.

Поговаривают о создании звукоизолирующих перегородок многоквартирных домок из пьезоэлектриков. Здесь двойной эффект и поглощение шума, и выработка электроэнергии, скажем, для обогрева квартир.

Пьезоэлектрическая струйная печать

Пьезоэлектрические струйные головки для принтеров были разработаны в семидесятых годах.

В большинстве таких принтеров избыточное давление в камере с чернилами создается с помощью диска из пьезоэлектрика, который изменяет свою форму (выгибается) при подведении к нему электрического напряжения.

Выгнувшись, диск, который служит одной из стенок камеры с чернилами, уменьшает ее объем. Под действием избыточного давления жидкие чернила вылетают из сопла в виде капли.

Пионер пьезоэлектрической технологии – фирма Epson – не смогла успешно соревноваться в объеме продаж со своими конкурентами Canon и Hewlett-

Packard из-за сравнительно высокой технологической стоимости пьезоэлектрических печатающих головок – они дороже и сложнее, чем пузырьковые печатающие головки.

Зажигалка бытовая пьезоэлектрическая ЗП-1 «Толнэ».

Зажигалка предназначена для зажигания газа в горелках бытовых газовых приборов.

Источником получения искры является пьезоэлемент.

Нажатием на клавишу усилие сжатия передается на пьезоэлементы, в результате чего происходит искрообразование между контактами, расположенными внутри металлической насадки, надетой на удлиненный конец пьезозажигалки.

Искра, которая поджигает газ, образуется как при нажатии на клавишу, так и при отпускании ее.

Современный дизайн может сделать зажигалку “изюминкой” кухонного интерьера.

Пьезоэлектрические излучатели применяются для генерирования ультразвука с частотами до 50 Мгц. Основным элементом пьезоэлектрического излучателя является пластинка из пьезоэлектрика, совершающая вследствие обратного пьезоэлектрического эффекта вынужденные механические колебания в переменном электрическом поле.

Наука – дело очень нелегкое. Наука пригодна лишь для сильных умов.

© 2018 Yamiki.ru

Источник: https://yamiki.ru/item/123186

Реферат «Пьезоэлектрический эффект»

Содержание: Пьезоэлектрический эффект Пьезоэлектрики – монокристаллы    Кварц    Турмалин    Сегнетова соль    Дигидрофосфат аммония    Виннокислый калий    Ниобат лития Поликристаллические пьезоэлектрики    Пьезоэлектрические текстуры    Пьезоэлектрическая керамика    Особенности технологии изготовления керамических пьезоэлементов Промышленные пьезокерамические материалы и пьезоэлектрики – полимеры    Материалы на основе титаната бария    Материалы на основе твердых растворов титаната – цирконата свинца    Материалы на основе метаниобата свинца

   Пьезоэлектрики – полимеры

Пьезоэлектрический эффект

В1756 г. русский академик Ф. Эпинус обнаружил, что при нагревании кристалла турмалина на его гранях появляются электрические заряды. В дальнейшем этому явлению было присвоено наименование пироэлектрического эффекта. Ф.

Эпинус предполагал, что причиной электрических явлений, наблюдаемых при изменении температуры, является неравномерный нагрев двух поверхностей, приводящий к появлению в кристалле механических напряжений.

Одновременно он указал, что постоянство в распределении полюсов на определённых концах кристалла зависит от его структуры и состава, таким образом, Ф. Эпинус подошел вплотную к открытию пьезоэлектрического эффекта.

Пьезоэлектрический эффект в кристаллах был обнаружен в 1880 г. братьями П. и Ж. Кюри, наблюдавшими возникновение на поверхности пластинок, вырезанных при определённой ориентировки из кристалла кварца, электростатических зарядов под действием механических напряжений. Эти заряды пропорциональны механическому напряжению, меняют знак вместе с ним и исчезают при его снятии.

Образование электростатических зарядов на поверхности диэлектрика и возникновение электрической поляризации внутри него в результате воздействия механического напряжения называют прямым пьезоэлектрическим эффектом.

Наряду с прямым существует обратный пьезоэлектрический эффект, заключающиеся в том, что в пластине, вырезанной из пьезоэлектрического кристалла, возникает механическая деформация под действием приложенного к ней электрического поля; причём величина механической деформации пропорциональна напряжённости электрического поля.

Обратный пьезоэлектрический эффект не следует смешивать с явлением электрострикции, т. е. с деформацией диэлектрика под действием электрического поля.

При электрострикции между деформацией и полем существует квадратичная зависимость, а при пьезоэффекте – линейная.

Кроме того, электрострикция возникает у диэлектрика любой структуры и происходит даже в жидкостях и газах, в то время, как пьезоэлектрический эффект наблюдается только в твёрдых диэлектриках, главным образом, кристаллических.

Пьезоэлектричество появляется только в тех случаях, когда упругая деформация кристалла сопровождается смещением центров тяжести положительных и отрицательных зарядов элементарной ячейки кристалла, т. е. когда она вызывает индивидуальный дипольный момент, который необходим для возникновения электрической поляризации диэлектрика под действием механического напряжения.

В структурах имеющих центр симметрии, никакая однородная деформация не сможет нарушить внутреннее равновесие кристаллической решётки и, следовательно, пьезоэлектрическими являются кристаллы только 20 классов, у которых отсутствует центр симметрии.

Отсутствие центра симметрии является необходимым, но не достаточным условием существования пьезоэлектрического эффекта, и поэтому не все ацентричные кристаллы обладают им.

Пьезоэлектрический эффект не может наблюдаться в твёрдых аморфных и скрытокристаллических диэлектриках (почти изотропных), так как это противоречит их сферической симметрии.

Исключение составляют случаи, когда они становятся анизотропными под влиянием внешних сил и тем самым частично приобретают свойства одиночных кристаллов.

Пьезоэффект возможен также в некоторых видах кристаллических текстур.

До сих пор пьезоэлектрический эффект не находит удовлетворительного количественного описания в рамках современной атомной теории кристаллической решетки. Даже для структур простейшего типа нельзя хотя бы приближённо вычислить порядок пьезоэлектрических постоянных.

В настоящие время разработана феноменологическая теория пьезоэффекта, связывающая деформации и механические напряжения с электрическим полем и поляризацией в кристаллах. Установлена система параметров, определяющих эффективность кристалла как пьезоэлектрика.

Пьезоэлектрический модуль (пьезомодуль) d определяет поляризацию кристалла (или плотность заряда) при заданном приложенном механическом напряжении; пьезоэлектрическая константа определяет механическое, возникающие в зажатом кристалле под действием электрического поля; пьезоэлектрическая постоянная g характеризует электрическое напряжение в разомкнутой цепи при заданном механическом напряжении; и, наконец, пьезоэлектрическая постоянная h определяет электрическое напряжение в разомкнутой цепи при заданной механической деформации. Эти постоянные являются родственными величинами и связанны друг с другом соотношениями, включающими в себя упругие константы и диэлектрическую проницаемость кристаллов, поэтому можно пользоваться любой из них. Наиболее употребителен пьезомодуль d. Пьезоэлектрические постоянные являются тензорами, и поэтому каждый кристалл может иметь несколько независимых пьезомодулей.

В общем виде уравнение прямого пьезоэффекта при воздействии однородного механического напряжения Tr записывается так:

Pi=dirTr,

Где Pi – компонент вектора поляризации; dir – пьезомодуль; Tr – компонент механического напряжения.

Уравнение обратного пьезоэффека записывается так:

Хi=dir*Er,

Где Xi – компонент упругой деформации; Er – компонент напряжённости электрического поля.

Каждый пьезоэлектрик есть электромеханический преобразователь, поэтому важной его характеристикой является коэффициент электромеханической связи r. Квадрат этого коэффициента представляет собой отношение энергии, проявляющийся в механической форме для данного типа деформации, к полной электрической энергии, полученной на входе от источника питания.

Во многих случаях пьезоэлектриков существенными являются их упругие свойства, которые описываются модулями упругости C (модулями Юнга Ею) или обратными величинами – упругими постоянными S.

При использовании пьезоэлектрических элементов в качестве резонаторов в некоторых случаях вводят частотный коэффициент, представляющий собой произведение резонансной частоты пьезоэлемента и геометрического размера, определяющего тип колебания. Эта величина пропорциональна скорости звука в направлении распространения упругих волн в пьезоэлементе.

В настоящие время известно много веществ (более 500), обнаруживших пьезоэлектрическую активность. Однако только немногие из них находят практическое применение.

Пьезоэлектрики – монокристаллы

Читайте также:  Системы автоматики: системы автоматического контроля, управления и регулирования

Кварц. Кварц – широко распростронённый в природе минерал, ниже температуры 573 по Цельсию кристаллизуется в тригонально-трапецоэдрическом классе гексагональной сингонии. Он принадлежит к энантиоморфному классу и встречается в природе в двух модификациях: правой и левой.

По химическому составу кварц представляет собой безводный диоксид кремния (SiO2) молекулярная масса 60,06.

Кварц относится к числу наиболее твёрдых минералов, обладает высокой химической стойкостью.

Внешние формы природных кристаллов кварца отличаются большим разнообразием. Наиболее обычной формой является комбинация гексагональной призмы и ромбоэдров (пирамидальные грани). Грани призмы расширяются к основанию кристалла и имеют на поверхности горизонтальную штриховку.

Годный для использования в пьезоэлектрической аппаратуре кварц встречается в природе в виде кристаллов, их обломков и окатанных галек. Цвет от бесцветно-прозрачного (горный хрусталь) до чёрного (морион).

Обычно природные кристаллы кварца содержат в себе различные дефекты, снижающие их ценность. К числу дефектов относятся включение инородных минералов (рутил хлорит), трещины, пузыри, фантомы, голубые иглы, свили и двойники.

В настоящее время наряду с природными используются синтетические кристаллы кварца, выращиваемые в автоклавах при повышенных температуре и давлении из насыщенных диоксидом кремния щелочных растворов.

Пьезоэлектрические свойства кварца широко используются в технике для стабилизации и фильтрации радиочастот, генерирования ультразвуковых колебаний и для измерения механических величин (пьезометрия).

Турмалин. Турмалин кристаллизуется в тригонально-пирамидальном классе тригональной сингонии. Кристаллы призматические с продольной штриховкой, удлиненные, часто игольчатой формы.

По химическому составу турмалин представляет собой сложный алюмоборосиликат с примесями магния, железа или щелочных металлов (Na, Li, K).

Цвет от чёрного до зелёного, также красный до разового, реже бесцветный. При трении электризуется, обладает сильным пироэлектрическим эффектом.

Турмалин широко распространён в природе, однако в большинстве случаев кристаллы изобилуют трещинами. Бездефектные кристаллы, годные для пьезоэлектрических резонаторов, встречаются редко.

Основным преимуществом турмалина является большее значение частного коэффициента по сравнению с кварцем. Благодаря этому, а также из-за большей механической прочности турмалина возможно изготовление резонаторов на более высокие частоты.

В настоящее время турмалин почти не используется для изготовления пьезоэлектрических резонаторов и имеет ограниченное применение для измерения гидростатического давления.

Сегнетова соль. Сегнетова соль кристаллизуется в ромботетраэдрическом классе ромбической сингонии. Принадлежность к энантиоморфному классу определяет теоретическую возможность существования правых и левых кристаллов сегнетовой соли. Однако получаемые из отходов виноделия кристаллы сегнетовой соли бывают только правыми.

Для предохранения от воздействия влаги пьезоэлементы из сегнетовой соли покрывают тонкими пленками лака.

Пьезоэлементы из сегнетовой соли широко использовались в аппаратуре, работающей в сравнительно узком температурном интервале, в частности, в звукоснимателях. Однако в настоящее время они почти полностью вытеснены керамическими пьезоэлементами.

Дигидрофосфат аммония. Дигидрофосфат аммония кристаллизуется в тетрагональной сингонии. Кристаллы представляют собой комбинацию тетрагональной пирамиды и призмы.

Кристаллы дигидрофосфата не содержат кристаллизованной воды и не обезвоживаются. При 93% относительной влажности воздуха кристаллы начинают поглощать влагу и растворятся.

Дигидрофосфат аммония плавится при температуре 190 градусов Цельсии, однако выше 100 градусов с поверхности кристалла начинает улетучиваться аммиак. Это ограничивает верхний предел рабочих температур.

В настоящее время вследствие широкого развития пьезоэлектрической керамики применение дигидрофосфата аммония ограничено.

Винокислый калий. Виннокислый калий (условное обозначение ВК) кристаллизуется в монокристаллической сингонии.

Содержащаяся в ВК кристаллизационная вода прочно связанна. Опытным путём установлено, что до температуры 80 градусов обезвоживание не наступает. Заметное растворение ВК начинается при 80% влажности.

Резонаторы из ВК имеют высокие добротности и коэффициента электромеханической связи. Они могут заменять кварц в фильтрах дальней связи.

Ниобат лития. Ниобат лития – синтетический кристалл, кристаллизуется в дитригонально-пирамидальном классе ромбоэдрической сингонии.

Ниобат лития не растворяется в воде, не разлагается при высоких температурах, отличается высокой механической прочностью. По электрическим свойствам он представляет собой сегнетоэлектрик с температурой Кюри около 1200 градусов Цельсия.

Благодаря своим высоким пьезоэлектрическим и механическим свойствам, в том числе и высокой добротности, ниобат лития является перспективным материалом для изготовления преобразователей различного назначения.

Тонкие (толщиной около одного микрометра) пленки ниобата лития, получаемые катодным распылением в вакууме, представляют собой ориентированные поликристаллические текстуры, которые могут быть использованы в качестве излучателей и приемников ультразвуковых колебаний СВЧ – диапазона.

Поликристаллические пьезоэлектрики.

Пьезоэлектрические текстуры. Текстуры, представляют собой ориентированную определенным образом в пространстве совокупность пьезоэлектрических кристаллов, не имеющую центра симметрии, могут обладать пьезоэлектрическим эффектом.

Пьезоэффект в текстурах сегнетовой соли был открыт А. В. Шубниковым; им же были установлены основные закономерности пьезоэффекта в аналогичных средах.

Пьезотекстуры сегнетовой соли, получаемые нанесением расплава сегнетовой соли на подложку с помощью кисти, имеют один пьезомодуль d14 сегнетовой соли.

В настоящее время такие текстуры не представляют практического интереса. Наибольшее значение имебт текстуры на основе поляризованной пьезоэлектрической керамики.

Пьезоэлектрическая керамика. Сегнетоэлектрические свойства таких материалов обуславливают возможность пьезоэлектрического эффекта. Под влиянием постоянного электрического поля некоторая часть доменов ориентируется в направлении приложенного поля.

После снятия внешнего поля большая часть доменов удерживается в своем новом положении из-за внутреннего поля, которое возникает в результате параллельной ориентации направлений поляризации доменов.

Благодаря этому керамика становится полярной текстурой, которая обладает пьезоэффектом.

Керамическая технология изготовления пьезоэлементов не накладывает принципиальных ограничений на их форму и размеры. Эти обстоятельства, а также высокие значения пьезоэлектрических характеристик обусловили широкое применение керамических пьезоэлементов в технике, в особенности в устройствах для излучения и приема ультразвуковых колебаний.

Особенности технологии изготовления керамических пьезоэлементов. Отличительной чертой процесса изготовления пьезокерамических изделий является их поляризация сильным постоянным электрическим полем, которое прикладывается обычно после нанесения электродов на спеченную заготовку, полученную одним из методов керамической технологии.

Промышленные пьезокерамические материалы и пьезокерамические – полимеры.

Материалы с различными свойствами подразделяются на марки (по составу и характеристикам) и на функциональные группы (по назначению).

Материалы функциональной группы 1 применяются для изготовления высокочувствительных пьезоэлементов, работающих в режиме приема или излучения механических колебаний.

Материалы функциональной группы 2 предназначены для пьезоэлементов, эксплуатирующихся в условиях сильных электрических полей или высоких механических напряжений.

Материалы функциональной группы 3 применяются для изготовления пьезоэлементов, обладающих повышенной стабильностью резонансных частот в зависимости от температуры и времени, а функциональной группы 4 – для высокотемпературных пьезоэлементов.

Рассмотрим теперь свойства пьезокерамики различных типов.

Материалы на основе титаната бария. Титанат бария является сегнетоэлектриком.

Пьезокерамика титаната бария (ТБ-1) широко применяется для изготовления преобразователей, к которым не предъявляют жесткие требования по температурной и временной стабильности характеристик.

Отсутствие в рецептуре титаната бария летучих при обжиге компонентов и простота технолигии изготовления пьезоэлементов делают этот материал по прежнему распространенным в технике.

Материалы на основе тверды растворов титаната – цирконата свинца. Твердые растворы титаната свинцаобладабт очень высокими значениями пьезоэлектрических характеристик. На основе этих твердых растворов были разработаны серии технологических пьезокерамических материалов, условное наименование ЦТС (за рубежом PZT).

Технология изготовления изделий из материалов типа ЦТС усложнена тем, что они содержат в своем составе оксид свинца, который частично улетучивается при высокотемпературном обжиге, что приводит к плохой воспроизводимости свойств.

Поэтому обжиг заготовок пьезоэлементов проводят в атмосфере паров оксида свинца, для чего заготовки помещают в плотно закрытые капсели, содержащие засыпку из оксидных соединений свинца.

Тем не менее, высокие характеристики этого типа материалов делают их весьма распространенными для изготовления пьезоэлектрических преобразователей различного назначения: для электроакустических приборов, ультразвуковой техники, пьезометрии, а также и некоторых видов радиотехнических фильтров.

Материалы на основе метаниобата свинца. Твердые растворы метаниобатов свинца и бария имеют высокую температуру точки Кюри.

Материалы на их основе имебт стабильные в широком температурном интервале значения пьезмодулей и резнансных частот.

Технология изготовления изделей из них проще, чем из материалов марки ЦТС, так как входящие в состав ниобатной керамики оксид свинца практически не летуч при обжиге.

Пьезоэлектрики – полимеры. Некоторые полимерные материалы в виде механически ориентированных и поляризованных в электрическом поле пленок являются полярными текстурами, в которых наблюдается пьезоэлектрический эффект.

Среди них практический интерес представляет поливинилиденфторид (ПВДФ). При вытяжке пленок из этого полимера на 300…

400% они ориентируются с образованием особой конформации, которая после поляризации в сильном электрическом поле приобретает пьезоэлектрический эффект.

Использованная литература:

Справочник по электротехническим материалам том 3

Источник: http://www.mini-soft.ru/document/pezoelektricheskiy-effekt

Электрострикция. Пьезоэлектрический эффект. Сегнетоэлектрики, их свойства и применение. Электрокалорический эффект

При помещении диэлектрика во внешнее электрическое поле на заряды его молекул действуют силы, которые деформируют диэлектрик, создают внутренние механические напряжения. Деформация диэлектрика оказывается пропорциональной квадрату напряженности электрического поля.

Это явление получило название “электрострикция”. Электрострикция обусловлена поляризацией диэлектриков в электрическом поле и наблюдается у твердых, жидких и газообразных диэлектриков. Электрострикцию следует отличать от так называемого обратного пьезоэффекта.

При обратном пьезоэффекте деформация диэлектрика пропорциональна напряженности электрического поля.

В изотропных средах, в том числе в газах и жидкостях, электрострикция наблюдается как изменение плотности под действием электрического поля.

В анизотропных кристаллах электрострикцию можно описать зависимостью между двумя тензорами 2-го ранга – тензором квадрата напряженности электрического поля и тензором деформации. Рассмотрение электрострикции в таких кристаллах выходит за рамки данного курса.

Деформация диэлектрика в однородном внешнем электрическом поле может быть вызвана переориентацией диполей (молекул) и изменением электрического дипольного момента молекул, изменением взаимодействия между ними.

В неоднородном внешнем электрическом поле диполи (молекулы) диэлектрика втягиваются (или выталкиваются) в область более сильного поля.

Следовательно, на закрепленный диэлектрик будут действовать силы, вызывающие деформацию диэлектрика, зависящую от степени неоднородности электрического поля.

В большинстве диэлектриков поляризация появляется и исчезает с появлением и исчезновением внешнего электрического поля.

Однако некоторые кристаллические диэлектрики, названные (по наиболее яркому представителю сегнетовой соли) сегнетоэлектриками, обладают рядом специфических свойств, которые позволяют их выделить в особую группу.

К сегнетоэлектрикам относятся диэлектрики, обладающие в определенном интервале температур спонтанной (самопроизвольной) поляризованностью даже в отсутствие внешнего электрического поля.

электрического поля. Возникшее электрическое поле доменов поддерживает ориентацию дипольных моментов доменов даже после прекращения внешнего электрического поля (рис. 3.11).

Основными свойствами сегнетоэлектриков являются:

а) диэлектрическая проницаемость их гораздо больше единицы (e>>1);


б) диэлектрическая проницаемость сегнетоэлектриков зависит от напряженности внешнего электрического поля (рис. 3.12);

в) во внешнем электрическом поле сегнетоэлектрики поляризуются до насыщения, т. е. до такого состояния, при котором дальнейшее изменение напряженности электрического поля не изменяет вектор поляризации (рис.3.13);

Читайте также:  Как устроены и работают токоограничивающие и дугогасящие реакторы в энергетике

г) во внешнем циклически изменяющемся электрическом поле им присуще явление гистерезиса, сложная зависимость вектора поляризации от напряженности электрического поля. Изменение вектора поляризации запаздывает по отношению к изменению напряженности электрического поля (рис. 3.14);

д) по своему строению сегнетоэлектрики представляют скопление областей спонтанной поляризации (доменов), электрические дипольные моменты которых имеют хаотические ориентации вектора P (рис.3.10, 3.11);

е) при нагревании сегнетоэлектриков до определенной температуры Тк, характерной для каждого сегнетоэлектрика, они теряют все свои специфические свойства и превращаются в обычные полярные диэлектрики.

Точка фазового перехода из состояния сегнетоэлектрика в состояние полярного диэлектрика называется точкой Кюри, а соответствующая ей температура Тк – температурой Кюри. В некоторых случаях имеются две точки Кюри – сегнетоэлектрические свойства исчезают также и при понижении температуры.

Сегнетоэлектриков с двумя точками Кюри сравнительно немного. Большинство имеет лишь верхнюю точку, называемую просто точкой Кюри.

При переходе диэлектрика из сегнетоэлектрического состояния в состояние полярного диэлектрика диэлектрическая проницаемость изменяется непрерывно от значения, соответствующего сегнетоэлектрическому состоянию, до значения, соответствующего состоянию полярного диэлектрика.

Закон изменения диэлектрической восприимчивости c вблизи температуры Кюри имеет вид

, (3.28)

где A – некоторая константа;

To – температура Кюри – Вейса, близкая к температуре Тк (в большинстве случаев вместо Тo используют Тк, что не вносит сколько-нибудь существенных погрешностей в c для температур, отличных от Тк). Закон, выражаемый формулой (3.28), называется законом Кюри-Вейса.

У кристаллов диэлектрические свойства неодинаковы по различным направлениям, и поэтому их диэлектрическая восприимчивость характеризуется не скалярной диэлектрической восприимчивостью c, а тензором диэлектрической восприимчивости cij. Однако зависимость компонент тензора от температуры имеет тот же характер.

Помимо сегнетоэлектриков имеются многочисленные кристаллы, на поверхности которых при деформациях возникают электрические заряды. Такие кристаллы называются пьезоэлектриками. Возникающие при деформации поверхностные заряды имеют различные знаки на различных частях поверхности. К числу пьезоэлектриков относят кварц, турмалин, сегнетовую соль и многие другие.

Пьезоэлектрическими свойствами обладают только ионные кристаллы. Под действием внешних сил кристаллическая подрешетка из положительных ионов деформируется иначе, чем кристаллическая подрешетка из отрицательных ионов.

В результате происходит относительное смещение положительных и отрицательных ионов, приводящее к возникновению поляризации кристалла и поверхностных зарядов. Поляризованность в первом приближении прямо пропорциональна деформации, а деформация кристалла, в свою очередь, прямо пропорциональна силе.

Следовательно, поляризованность прямо пропорциональна приложенной силе. Между разноименно заряженными гранями деформированного диэлектрика возникает разность потенциалов, которую можно измерить, а по ее значению сделать заключение о величине деформаций и приложенных силах, что находит многочисленные практические применения.

Например, имеются пьезоэлектрические датчики для измерения быстропеременных давлений. Известны пьезоэлектрические микрофоны, пьезоэлектрические датчики в автоматике и телемеханике и т.д.

Помимо прямого пьезоэффекта в пьезоэлектриках существует обратный пьезоэффект. Он состоит в том, что во внешнем электрическом поле пьезоэлектрик деформируется. Его существование следует из наличия прямого эффекта и закона сохранения энергии.

При деформировании пьезоэлектрика работа затрачивается на образование энергии упругой деформации и энергии возникающего при этом в результате пьезоэффекта электрического поля.

Следовательно, при деформировании пьезоэлектрика необходимо преодолевать дополнительную силу, кроме силы упругости кристалла, которая препятствует деформации и является фактором, обусловливающим обратный пьезоэффект.

Чтобы компенсировать дополнительную силу, надо приложить внешнее электрическое поле, противоположное тому, которое возникает в пьезоэффекте.

Таким образом, для получения некоторой деформации пьезоэлектрика под влиянием внешнего электрического поля необходимо, чтобы оно было равно, но противоположно направлено тому полю, которое при данной деформации возникает в результате прямого пьезоэлектрического эффекта. Механизм обратного пьезоэлектрического эффекта аналогичен механизму прямого пьезоэффекта. Под действием внешнего электрического поля кристаллические подрешетки положительных и отрицательных ионов деформируются различным образом, что и приводит к деформации кристалла.

Обратный пьезоэлектрический эффект также имеет многочисленные практические применения, в частности широкое применение получили кварцевые излучатели ультразвука.

У некоторых пьезоэлектриков подрешетка положительных ионов оказывается смещенной относительно подрешетки отрицательных ионов в состоянии термодинамического равновесия, в результате чего такие кристаллы оказываются поляризованными при отсутствии внешнего электрического поля. Их называют пироэлектриками.

Обычно наличие спонтанной поляризации маскируется свободными поверхностными зарядами, появляющимися на поверхности кристалла из окружающей среды под действием электрического поля, связанного со спонтанной поляризацией. Данный процесс происходит до тех пор, пока электрическое поле не будет полностью нейтрализовано.

Однако при изменении температуры образца, например при нагревании, происходит смещение ионных подрешеток друг относительно друга, в результате чего изменяется спонтанная поляризованность и на поверхности кристалла появляются электрические заряды. Возникновение этих зарядов называется прямым пироэлектрическим эффектом.

Всякий пироэлектрик является пьезоэлектриком, но не всякий пьезоэлектрик является пироэлектриком. Это связано с тем, что у пироэлектрика имеется выделенное направление, вдоль которого существует спонтанная поляризация, а у пьезоэлектрика такого выделенного направления нет.

Наблюдается также и обратный пироэлектрический эффект: изменение электрического поля в адиабатно изолированном пироэлектрике сопровождается изменением его температуры. Необходимость его существования может быть доказана на основе термодинамического анализа процесса и продемонстрирована экспериментами. Обратный пироэлектрический эффект иногда называют электрокалорическим эффектом.

При электрокалорическом эффекте в пироэлектриках изменение температуры пропорционально изменению напряженности электрического поля, в других веществах наблюдается лишь меньший по величине квадратичный электрокалорический эффект.

Существуют диэлектрики, которые длительно время сохраняют поляризованное состояние после снятия внешнего воздействия, вызвавшего поляризацию, и создающие электрическое поле в окружающем пространстве (электрические аналоги постоянных магнитов). Такие диэлектрики получили название “электреты”.

Если вещество, молекулы которого обладают дипольным моментом, расплавить и поместить в сильное электрическое поле, то его молекулы частично выстроятся по направлению поля. При охлаждении расплава в электрическом поле и последующем выключении поля в затвердевшем веществе поворот молекул затруднен, и они длительное время будут сохранять преимущественную ориентацию.

Первый электрет был таким методом изготовлен в 1922 г. японским физиком Ёгучи.

При изготовлении электретов в диэлектрик могут переходить носители заряда из электродов или межэлектродного пространства. Носители могут быть созданы и искусственно, например облучением электронным пучком.

Стабильные электреты получают различными методами:

· нагревания, а затем охлаждения в сильном электрическом поле (термоэлектреты);

· освещения в сильном электрическом поле (фотоэлектреты);

· облучения, радиоактивного излучения (радиоэлектреты);

· поляризации в сильном электрическом поле без нагревания (электроэлектреты) или в магнитном поле (магнетоэлектреты);

· при застывании органических растворов в электрическом поле (криоэлектреты);

· механической деформации полимеров (механоэлектреты);

· трения (трибоэлектреты);

· действием поля коронного разряда (короноэлектреты).

Все электреты имеют стабильный поверхностный заряд.

Электреты применяют как источники постоянного электрического поля (электретные микрофоны и телефоны, вибродатчики, генераторы слабых переменных сигналов, электрометры, электростатические вольтметры и др.

), а также как чувствительные датчики в устройствах дозиметрии, электрической памяти; для изготовления барометров, гигрометров и газовых фильтров, пьезодатчиков и др. Фотоэлектреты применяются в электрофотографии.

Сегнетоэлектрики

Активные диэлектрики

Это органические и неорганические материалы, свойствами которых можно управлять с помощью внешних энергетических воздействий и использовать эти воздействия для создания функциональных элементов электроники.

К ним относятся сегнето-, пьезо-, пиро- электрики, электреты, материалы квантовой электроники, жидкокристаллические, электро – магнито – и акустооптические материалы и др.

Резкой границы между пассивными и активными диэлектриками не существует. Один и тот же материал может выполнять пассивные (изолятор, подложка, конденсатор) и активные функции преобразующего элемента. Требования к активным диэлектрикам противоположны: нестабильность свойств, а наиболее сильное изменение какого-либо свойства при внешнем воздействии.

Активные диэлектрики часто классифицируют по роду физических эффектов, которые можно использовать для управления свойствами. Однако, один и тот же материал может проявлять чувствительность к различным видам энергетических воздействий. Наиболее универсальны – сегнетоэлектрики (они же пьезо-, пироэлектрики, нелинейнооптические материалы и т.д.)

Сгруппируем активные диэлектрики по важнейшим для них свойствам или их специфике.

Это вещества, обладающие спонтанной поляризацией, направление которой может быть изменено с помощью внешнего электрического поля.

В отсутствии электрического поля сегнетоэлектрики имеют доменную структуру с различным направлением электрических моментов доменов. Суммарная поляризация может быть равна 0.

Внешнее электрическое поле изменяет направление электрических моментов, что создает эффект сильной поляризации. Отсюда e может вырасти до сотен тысяч.

Следствием доменного строения сегнетоэлектриков является нелинейная зависимость их электрической индукции от напряжения электрического поля и наличием диэлектрического гистерезиса (из-за необратимого смещения доменных границ).

Точка В – все домены ориентированы по полю. До точки А обратимое изменение доменных границ, далее АВ – необратимое

При снятии напряженности поля индукция не понизится до «0», а примет некоторое значение. При изменении полярности поля быстро снизится и изменит свое направление. При повышении температуры доменная структура распадается. Температура фазового перехода называется сегнетоэлектрической точкой Кюри. В точке Кюри e максимальна. Для BaTiO3 Тк=120оС.

Существует несколько сотен соединений со свойствами сегнетоэлектриков – это могут быть ионные и дипольные кристаллы. Температура точки Кюри изменяется от 15К (Pb2Nb2O4) до 1483К (LiNbO3).

Ионные: BaTiO3, PbTiO3, KNbO3, LiTaO3.

Дипольные: сегнетоваясоль (NaKC4H4O6 4H2O), KH2PO4, NaNo2.

Применение сегнетоэлектриков:

1. изготовление малогабаритных конденсаторов с большой удельной емкостью;

2. изготовление диэлектрических усилителей, модуляторов;

3. в качестве ячеек памяти в вычислительной технике;

4. изготовление пьезоэлектрических и пироэлектрических преобразователей.

Для изготовления конденсаторов используются сегнетокерамические материалы (твердые растворы, смеси кристаллических фаз), которые не имеют сильных температурных зависимостей:

Материал Т-900 – твердый раствор SrTiO3 и Bi4Ti3O12. Тк=-140оС; e20о=900

Материал СМ-1 – BaTiO3+ZrO2+Bi2O3. e20о=3000 – используют для малогабаритных конденсаторов.

Материал Т-9000 – твердый раствор BaTiO3 – BaZrO3 e20о=8000 – используют для высоковольтных конденсаторов.

У материалов для варикондов (нелинейных конденсаторов), применяемых для управления параметрами электрических цепей, e изменяется от 4 до 50 раз (твердые растворы Ba(Ti, Sn)O3, Pb(Ti, Zr,Sn)O3).

Материалы для ячеек памяти – сегнетоэлектрики с прямоугольной петлей гистерезиса. В первую очередь это триглицинсульфат.

При Е = 0, есть два устойчивых состояния. Одно используется для хранения «1», а другое «0». Считывание информации может проводиться без ее разрушения: оптическим методом или измерением сопротивления полупроводниковой пленки, нанесенной на сегнетоэлектрик. Время переключения ячейки несколько мкс (меньше, чем в монокристаллах).

Электрооптические кристаллы – изменяют показатель преломления среды под влиянием внешнего электрического поля. Если n ~ Е, то электрооптический эффект линейный или эффект Поккельса, если n2~Е – квадратичный или эффект Керра.

Электрооптический эффект используется для модуляции лазерного излучения. Электрооптические модуляторы света создаются на базе LiNbO3, KH2PO4, ТР Pb(Ti,Zr)O3.

Материалы нелинейной оптики – используют эффект нелинейной поляризации среды под действием мощных световых пучков, создаваемых лазерами (n зависит от световой волны). Это позволяет преобразовывать частоты оптических сигналов (ИК – излучение переводить в видимое излучение). Эффективны KH2PO4, LiNbO3, LiIO3 и др.

Источник: https://cyberpedia.su/14x12c5c.html

Ссылка на основную публикацию
Adblock
detector