Передача электроэнергии по проводам

Передача электроэнергии по одному проводу

?альтернативная энергия (afhh723) wrote,
2016-09-25 20:03:00альтернативная энергия
afhh723
2016-09-25 20:03:00довольно интересный вопрос. поробуем расмотреть его подробно, попутно отделяя мух от котлет.

первое что нам надо понить это определние тока: “ток – направленное движение заряженных частиц

нам понадобится и еще один очевидный факт: “ток в разомкнутой цепи не течет

ну и до кучи несколько определений из словаря электрика:

активная мощьность – мощность затраченная на совершение работы не обязательно полезной.

пример:т.е. у нас есть трансформатор который питает потребителя. cтоит и гудит. вот гудит это работа на которую затрачивается активная мощность, хоть эта работа абсолютно бесполезная с точки зрения потребителя.

реактивная мощность – мощность которая на совершение работы потрачена не была и вернулась обратно.

пример: пусть подали ток на индуктивность, потом сняли. ток перешел в магнитное поле, потом часть этого поля после снятия тока снова перешела в ток. конечно этот ток это активная мощность, но вот сам переход.

нечто похожее наблюдается в обычном асинхронном двигателе на холостом ходу – энергия возвращается в линию хотя и не в тот же момент времени.  добавляя нагрузку на вал (торомозной момент) мы увеличиваем активную мощность (умные дятки говорят изменяем скольжение вала относително магнитного поля) и уменьшаем реактивную – т.е.

изменяется коэфициэнт активной мощности т.е. косинус фи.

косинус фи или коэфициэнт мощности (активной мощности) безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей.

Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения. численно коэффициент мощности равен косинусу этого фазового сдвига.

в принципе все. твердо стоя на этих принципах можно многое объяснить.

в начеле зададимся простым вопросом: “а может ли по одному проводу протекать ток? ” ну и как мы договаривались мы твердо стоим на принципах изложенных выше.

один провод – цепь не замкнутая – значит ток по ней течь не может. т.е. уверненнно можно сказать тока там нет. а что же есть? лампочски горят, моторы крутятся…

да и легко можно найти кучу роликов с демонситрацией подобного эффекта:ну и что это? розыгрыш или еще что-то?вначале вспомним как работает радиоэфирный телевизор. ведь наша любимая картинка как-то в этот телевизор запрыгивает.механизм довольно простой: есть передатчик, который излучает радиоволны, а телевизор это приемник.

не будем разбирать методы кодирования картинки – нас интересует сам факт получения сигнала.можно сказать, что эта мощность очень мала, но надо заметить, это большей частью связано с направленостью передающей и принимающей антены.т.е. предача электричества  по одному проводу это не активная мощность (не закон Ома), а передача электромагнитной волны, а не тока.

на радиоволны условия замкнутости цепи не распростроняются, в чем легко можно убедится на примере телевизора.

в случае однопроводной передачи электроэнергии мы имеем дело с вырожденым радиоприемником и передатчиком, а провод в этом случае является волноводом. т.е. провод имет свою ёмкость и индуктивность т.е. это цепь с распределенными параметрами.

раз есть емкость и индуктивность есть и резонансная частота. и на этой частоте можно передовать энергию в виде электромагнитного поля.

остановимся на этой мысле более подробно.

в обычной классической цепи скрость электрона в проводе это сантиметры в секунду. но позволте а каже телеграф? там все быстро, а в цепи обычный ток…

дело в том что с околосветовой скоростью в доль провода распространяется электроманитная волна сами же носители заряда – электроны перемещаются медленно. т.е.

“первый” и “последний” электрон начинают свое движение практически одновременно, хотя их скорость небольшая.

но вернемся к электромагнитной волне. что там активная и реактивная? дело в том что если энергия вся переходит в магнитное поле и вся в электрическое, что справедливо для электромагнитной волны, это означает что нет активной мощности.

(в реальности конечно немного теряется, но будем говорить об идиальном случае) т.е. можно сказать что вся энергия реактивная и активная мощность нулевая. т.е. косинус фи равен нулю. сдвиг фазы при этом 90 градусов. т.к.

активная мощность нулевая (нам не надо физически двигать заряженные частицы) абсолютно неважно сечение проводника. т.е. мы имем дело не с оммической цепью, а с волноводом.

т.е. в однопроводной лини мы имеем случай разделенных мух и котлет – электромагнитная волна есть, а движения электронов нет. тут умесно вспомнить ток – направленное дижение заряженных частиц т.е. энернгия передается только в виде электромагнитного поля.

для стоячей электромагнитной волны меня в школе учили рисовать такой рисунок:

максимуму напряженнности одного поля соотвествует 0 другого т.е. смещены именно на 90 градусов. т.е. електрополе начинает переходить в магнитное, в какой-то моент времени все перешло, что соотвествует 0 электрического поля и максимуму магнитного. магнитное поле начинает переходить в электрическое и в какой-то момент времени полностью перейдет, что соотвествует 0 магнитного поля и максимуму электрического и т.д.  из того что поле переходит одно в другое полностью, а угол смещения фазы электрического и магнитного поля равен 90 градусам, можно сделать вывод о том, что мы имем дело со стоячей электромагнитной волной.т.е. можно сказать ничего нового в этих роликах не демонстрируется, если мне не изменяет память, с 1864 года – это электромагнитная волна. можно придумать разнообразные способы как “раскачивать” электромагнитную волну в проводе, принципиальной сути это не меняет.

ограничения использования этой технологии совпадает с ограничением использования радиочастотных линий, при этом надо заметить, что частота там относительно небольшая – это примерно десятки КГц.

Источник: https://afhh723.livejournal.com/17059.html

Как передать энергию по одному проводу

В интернете достаточно много обсуждений на тему передачи энергии по одному проводу. Обычно для такой передачи энергии подразумевается наличие заземления, хотя на самом деле это не лучший вариант передачи энергии.

Лучше всего передавать энергию по оному проводу с помощью схемы, представленной ниже.

Соединяющий провод можно использовать очень тонкий, в моих опытах провод был диаметром 0.08мм.

При хорошо подобранных параметрах катушек транзистор можно использовать без дополнительных резисторов, как нарисовано на схеме. Для кт315 подобное включение работает примерно при 9 вольтах, для кт805 подобное включение может быть работоспособно при 12 вольтах.

Важно соблюдать правильное подключение катушек в передающей части схемы, иначе она не заработает. Катушка L2 обычно мотается с большим количеством витков проводом диаметром 0.2 — 0.5 мм.

Катушки L2 — L4 должны быть одинаковые! Проверить работоспособность схемы легко, достаточно взять в руки светодиод за одну из его ножек и поднести его к контакту катушки L2. Он должен начать светиться. Диоды выпрямителя на приемной части схемы должны быть высокочастотными. Также лучше поставить на выходе выпрямителя сглаживающий конденсатор.

Видео с работой данной схемы

Можно заметить, что схема включения на видео отличается от схемы в статье. В видео база транзистора подключена к резистивному делителю, состоящему из 27 и 240 ом. Остальное работает так же. Аккумулятор на 12 вольт не обязательно ставить мощный, потребление от схемы небольшое и для опытов хватит кроновой батарейки, если устройство будет сделано небольших габаритов по схеме из данной статьи. Конические катушки мотать не нужно, в видео они были использованы, так как других под рукой просто не было.

Отличие от других схем

Две схемы, представленные выше, без заземления будут работать тем хуже, чем длиннее соединяющий провод. Причем, это весьма заметно в пределах 3-х метров.

При подключении к приемной части массивного проводящего предмета, прием энергии улучшается, однако все равно остается хуже, чем в самой первой схеме данной статьи.

Для первой схемы эффективность приема энергии не так сильно зависит от длины соединяющего провода и не требует наличия массивного проводящего предмета в качестве заземления.

Некоторые опыты

Опыт с лампочкой

Если вывод катушки L2 подключить к лампочке с нитью накала, а второй провод лампочки сделать достаточно длинным, нить накала будет гореть. Однако она будет гореть не равномерно, а с постепенным затуханием.

Опыт с катушкой вокруг провода

Источник: https://habr.com/post/396885/

Передача электроэнергии на расстояние

Главная > Теория > Передача электроэнергии на расстояние

Произведенную электроэнергию невозможно хранить, ее надо немедленно передавать потребителям. Когда был придуман оптимальный способ транспортировки, началось бурное развитие электроэнергетики.

Передача электроэнергии

История

Первые генераторы строили рядом с потребителями энергии. Они были маломощными и предназначались только для электроснабжения отдельного здания или городского квартала.

Но затем пришли к выводу, что гораздо выгоднее возводить крупные станции в районах концентрации ресурсов. Это мощные ГЭС – на реках, крупные ТЭС – рядом с угольными бассейнами.

Для этого нужна передача электроэнергии на расстояние.

Начальные попытки построить передающие линии столкнулись с тем, что при соединении генератора с приемниками электроэнергии длинным кабелем мощность к концу передающей линии сильно снижалась из-за огромных потерь на нагрев. Необходимо было использовать кабели с большей площадью сечения, что делало их значительно более дорогими, или повышать напряжение, чтобы уменьшить силу тока.

После опытов с передачей постоянного и однофазного переменного тока с помощью линий повышенного напряжения потери оставались слишком высокими – на уровне 75%. И только когда Доливо-Добровольский разработал систему трехфазного тока, был сделан прорыв в передаче электроэнергии: добились снижения потерь до 20%.

Важно! Сейчас подавляющее большинство линий электропередачи использует трехфазный переменный ток, хотя идет развитие и ЛЭП на постоянном токе.

Схема передачи электроэнергии

Магнит на счетчик электроэнергии

В цепи от производства энергии до получения ее потребителями существует несколько звеньев:

  • генератор на электростанции, вырабатывающий электроэнергию напряжением 6,3-24 кВ (есть отдельные агрегаты с большим номинальным напряжением);
  • повышающие подстанции (ПС);
  • сверхдальние и магистральные ЛЭП напряжением 220-1150 кВ;
  • крупные узловые ПС, понижающие напряжение до 110 кВ;
  • ЛЭП 35-110 кВ для передачи электрической энергии на питающие центры;
  • дополнительные понижающие подстанции – питающие центры, где получают напряжение 6-10 кВ;
  • распределительные ЛЭП 6-10 кВ;
  • трансформаторные пункты (ТП), ЦРП, находящиеся рядом с потребителями, для понижения напряжения до 0,4 кВ;
  • низковольтные линии для подведения к домам и другим объектам.

Упрощенная схема передачи электроэнергии

Схемы распределения

ЛЭП бывают воздушными, кабельными и кабельно-воздушными. Для увеличения надежности электрическая мощность в большинстве случаев передается несколькими путями. То есть на шины подстанции подводятся две и более линий.

Существует две схемы распределения электроэнергии 6-10 кВ:

  1. Магистральная, когда линия 6-10 кВ является общей для питания нескольких ТП, которые могут быть расположены на всем ее протяжении. Если при этом магистральная ЛЭП получает питание от двух разных фидеров с обеих сторон, такая схема называется кольцевой. При этом в нормальном режиме работы она питается от одного фидера и отключена от другого коммутационными аппаратами (выключателями, разъединителями);

Магистральная схема с двухсторонним питанием

  1. Радиальная. В этой схеме вся мощность сосредоточена в конце ЛЭП, которая предназначена для электроснабжения единственного потребителя.
Читайте также:  Использование асинхронных двигателей с фазным ротором в составе частотнорегулируемого электропривода

Для линий напряжением 35 кВ и выше используют схемы:

  1. Радиальная. Мощность на ПС приходит по одноцепной или двухцепной питающей линии от одной узловой подстанции. Самая экономически выгодная схема – с одной линией, но очень ненадежная. Благодаря двухцепным ЛЭП, создается резервное питание;
  2. Кольцевая. Шины ПС запитываются не менее, чем двумя ЛЭП от независимых источников. При этом на питающих линиях могут существовать ответвления (отпайки), отходящие на другие ПС. Общее число отпаечных ПС должно быть не больше трех для одной ЛЭП.

Важно! Кольцевую сеть питают не меньше двух узловых подстанций, размещенных, как правило, на значительном расстоянии друг от друга.

Трансформаторные подстанции

Как остановить счетчик электроэнергии

Трансформаторные подстанции наряду с ЛЭП – основная составная часть энергосистемы. Они делятся на:

  1. Повышающие. Находятся вблизи электростанций. Основное оборудование – силовые трансформаторы, повышающие напряжение;
  2. Понижающие. Расположены на других участках электросети, находящихся ближе к потребителям. Содержат понижающие трансформаторы.

Существуют еще преобразовательные ПС, но они не относятся к трансформаторным. Служат для преобразования переменного тока в постоянный, а также получения тока другой частоты.

Основное оборудование трансформаторных ПС:

  1. Распредустройство высокого и низкого напряжения. Оно может быть открытого типа (ОРУ), закрытого типа (ЗРУ) и комплектное (КРУ);
  2. Силовые трансформаторы;
  3. Щит управления, релейный зал, где сосредоточена аппаратура защит и автоматического управления коммутационными аппаратами, сигнализация, измерительные приборы и счетчики электроэнергии. Два последних вида оборудования, как и некоторые виды защит, могут присутствовать и в КРУ;

Щит управления подстанцией

  1. Аппаратура собственных нужд ПС, куда входят трансформаторы собственных нужд (ТСН), понижающие напряжение с 6-10 до 0,4 кВ, шины СН 0,4 кВ с коммутационными аппаратами, батарея аккумуляторов, устройства подзаряда. От СН питаются защиты, освещение ПС, отопление, двигатели обдува трансформаторов (охлаждение) и т. д. На тяговых железнодорожных ПС трансформаторы собственных нужд могут иметь первичное напряжение 27,5 или 35 кВ;
  2. В распредустройствах находятся коммутационные аппараты трансформаторов, питающих и отходящих линий и фидеров 6-10 кВ: разъединители, выключатели (вакуумные, элегазовые, масляные, воздушные). Для питания цепей защит и измерений применяются трансформаторы напряжения (ТН) и тока (ТТ);
  3. Оборудование для защиты от перенапряжений: разрядники, ОПН (ограничители перенапряжений);
  4. Токоограничивающие и дугогасительные реакторы, батареи конденсаторов и синхронные компенсаторы.

Последнее звено понижающих подстанций – трансформаторные пункты (ТП, КТП-комплектные, МТП-мачтовые). Это небольшие устройства, содержащие 1, 2, реже 3 трансформатора, понижающие напряжение иногда с 35, чаще с 6-10 кВ до 0,4 кВ. Со стороны низкого напряжения установлены автоматы. От них отходят линии, непосредственно распределяющие электрическую энергию реальным потребителям.

Комплектная трансформаторная подстанция

Пропускная способность линий электропередачи

Какой счетчик электроэнергии лучше поставить в квартире

При передаче электрической энергии основным показателем является пропускная способность ЛЭП. Она характеризуется значением активной мощности, передаваемой по линии в нормальных рабочих условиях.

Пропускная способность находится в зависимости от напряжения ЛЭП, ее протяженности, размеров сечения, вида линии (КЛ или ВЛ). При этом натуральная мощность, не зависящая от длины ЛЭП, – это активная мощность, которая передается по линии при полной компенсации реактивной составляющей.

Практически таких условий достичь невозможно.

Важно! Максимальная передаваемая мощность для ЛЭП напряжением от 110 кВ и ниже ограничивается только нагревом проводов. На линиях более высокого напряжения учитывается еще статическая устойчивость энергосистемы.

Некоторые значения пропускной способности ВЛ при КПД = 0,9:

  • 110 кВ: натуральная мощность – 30 мВт, максимальная – 50 мВт;
  • 220 кВ: натуральная мощность – 120-135 мВт, максимальная – 350 мВт по устойчивости и 280 мВт по нагреву;
  • 500 кВ: натуральная мощность – 900 мВт, максимальная – 1350 мВт по устойчивости и 1740 мВт по нагреву.

Потери электроэнергии

Не вся электроэнергия, выработанная на электростанции, доходит до потребителя. Потери электроэнергии могут быть:

  1. Технические. Вызываются потерями в проводах, трансформаторах и другом оборудовании на нагрев и из-за других физических процессов;
  2. Несовершенство системы учета на энергопредприятиях;
  3. Коммерческие. Происходят из-за отбора мощности, помимо приборов учета, разницы фактически потребленной мощности и учтенной счетчиком и т. д.

Технологии передачи электроэнергии не стоят на месте. Развивается использование сверхпроводящих кабелей, позволяющих свести потери практически к нулю. Беспроводная передача электроэнергии – уже не фантастика для подзарядки мобильных устройств. А в Южной Корее работают над созданием беспроводной системы передачи энергии для электрифицированного транспорта.

Видео

Источник: https://elquanta.ru/teoriya/peredacha-ehlektroehnergii-na-rasstoyanie.html

Передача электроэнергии

Передача электроэнергии — одна из важнейших задач энергетики.

Наиболее просто передавать энергию в виде электроэнергии, которую могут непосредственно использовать потребители. Электроэнергия передается с помощью воздушных линий электропередач или по подземным кабелям.

Воздушные линии электропередач.

Первая в мире линия электропередачи трехфазного тока была построена в 1881 г. в Германии русским инженером М. О. Доливо-Добровольским.

По проводам, как правило, передают электроэнергию переменного тока большого напряжения. Переменный ток легче трансформировать на различные уровни напряжения. При этом используются как повышающие трансформаторы (на входе), так и понижающие (на выходе).

Большой уровень напряжения обусловлен желанием снизить силу передаваемого тока (для уменьшения массы проводов и потерь). Низковольтные системы могут сравниться по потерям с высоковольтными только при использовании проводов большого сечения.

Если, например, электроэнергия передается при обычном бытовом напряжении (220 В), то потребуется выбрать кабель настолько большого сечения, что стоимость кабеля станет ограничивающим фактором уже при передаче энергии даже на небольшие расстояния.

С увеличением расстояния и требуемой пропускной способности ЛЭП становится необходимым повышать напряжение. Для воздушных ЛЭП максимальная передаваемая мощность увеличивается с ростом напряжения, однако, вместе с тем повышается и стоимость ее сооружения.

В настоящее время построены ЛЭП напряжением 1150 кВ.

Необходимо учитывать, что при вводе в строй ЛЭП таких высоких уровней напряжения одной из основных задач является проблема обеспечения электрической изоляции как самой ЛЭП, так и трансформаторов, коммутационной аппаратуры и т.д.

Передача постоянного тока.

Пропускная способность ЛЭП постоянного тока примерно вдвое выше (реактивное сопротивление не вносит потерь). Однако при этом требуются более дорогие преобразовательные устройства. Поэтому при передаче энергии на большие расстояния (когда весовой коэффициент затрат на оборудование преобразовательных подстанций ниже) такие ЛЭП выглядят предпочтительнее.

На передающем конце линии напряжение переменного тока, вырабатываемое генератором (обычно 36 кВ), повышается трансформатором до желаемого уровня. Затем в выпрямителе получают постоянный ток высокого напряжения, направляемый в ЛЭП.

На приемном конце ЛЭП инвертор вновь преобразуем постоянный ток в переменный, после чего понижающие трансформаторы доводят напряжение до уровня, нужного потребителям.

Важный вопрос – снижение потерь при передаче энергии. В качестве мероприятий по снижению электрических потерь при передаче электроэнергии рассматривались методы, основанные на зависимости сопротивления провода от температуры.

При температуре проводов -209°С потери снижаются в 10 раз. Еще более кардинальное решение этой проблемы – использование явления сверхпроводимости, открытого в 1911 году Оннесом.

Сущность явления заключается в следующем: многие металлы, сплавы и интерметаллические соединения, которые при комнатной температуре плохо проводят ток, при снижении температуры ниже некоторого критического значения (менее 20 К) обнаруживают снижение электрического сопротивления практически до нуля, т.е. пропускают ток без потерь. Развития эти методы не получили вследствие чрезмерной стоимости оборудования, снижающего температуру.

Недостатки воздушных линий электропередач:

  1. полоса отчуждения земли воздушной линии протяженностью 1 км составляет около 1 Га;
  2. сильные электрические поля у линий электропередач оказывают вредное биологическое влияние.

Передача электроэнергии по подземным кабелям.

Недостатки: высокая стоимость (неэкономичность), трудность прокладки, сложность ремонта.

К передаче электроэнергии по подземным кабелям прибегают в случае, когда стоимость полосы отчуждения земли становится чрезмерно высокой.

Этот вариант используется при передаче энергии в городских районах, где стоимость отчуждения земли для воздушных линий уравновешивает высокую стоимость прокладки подземной кабельной линии.

Проблемы, которые необходимо решить: изоляция. Из-за ограниченного места расположения кабелей жилы должны быть расположены весьма близко друг от друга. Используется бумажная изоляция, пропитанная минеральным маслом.

Тонкие, обмотанные бумагой жилы плотно укладываются в оболочку, а затем три кабеля, по одному на каждую фазу, помещаются в трубу которая затем наполняется маслом под давлением.

Через определенные расстояния отрезки кабеля сращиваются между собой.

Передача органических энергоносителей.

Транспортировка нефти через океан танкерами. Более экономична перевозка крупными танкерами. Один из крупнейших танкеров США “Bellamya” имеет водоизмещение 541 тыс.т. Проблемы: аварии танкеров.

Одна из крупнейших аварий танкеров случилась в 1978 году, когда в проливе Ла-Манш сел на мель танкер “Amoco Cadiz”. В море вылилось 216 тыс.тонн нефти.Уничтожаются десятки тысяч живых существ.

Особенно вредны выбросы нефти в районах с малой интенсивностью волн и низкой температурой воды. Рассеивание нефтяного пятна здесь может продолжаться более 10 лет.

Передача нефти и газа трубопроводами.

Для того, чтобы преодолевать сопротивление вязкости, требуется насосная перекачка. Проблемы: вязкость потока. Особенно проявляется при низких температурах.

Передача природного газа осуществляется либо по газопроводам – трубам большого диаметра (до 1,5 м), либо океанскими танкерами в сжиженом виде при низкой температуре (стоимость сжижения и регазификации высока).

Крупнейшими в мире газонефтепроводами являются Уренгой (Западная Сибирь) – страны Западной Европы, Трансаляскинский нефтепровод (США) от месторождения Прадхо Бей (Аляска) через Канаду до Калифорнии.

Это самый дорогостоящий промышленный объект, когда-либо сооружавшийся в мире (12 млрд долл.). Протяженность 1289 км, пропускная способность 270 тыс.

т нефти/сутки, перекачка осуществляется 12 насосными станциями, толщина стенок труб – полдюйма.

Передача водорода. 

Можно использовать трубопроводы для передачи природного газа. Недостаток: повышенные утечки газа при самых малых нарушениях герметичности; воздействие атомов водорода на металлы и сплавы (особенно при повышенных давлениях), в результате чего сталь становится хрупкой и ломкой.

Затраты на транспортировку некоторых видов энергоносителей (в отн.ед):

  • метан (по трубопроводу) – 1,0;
  • водород (по трубопроводу) – 1,03;
  • бензин (танкерами) – 3,0;
  • электроэнергия (по высоковольтным линиям) – 6,6.

Нравится

Источник: http://yznaika.com/notes/449-energy-transmission

Передача электроэнергии по одному проводу, правда или нет

Передача электроэнергии по одному проводу — выдумка или реальность? В 1892 году в Лондоне, а через год в Филадельфии, известный изобретатель, серб по национальности, Никола Тесла демонстрировал передачу электроэнергии по одному проводу.

 Как он это делал — остается загадкой. Часть его записей до сих пор не расшифрована, другая часть сгорела. Сенсационность опытов Тесла очевидна любому электрику: ведь, чтобы ток шел по проводам, они должны составлять замкнутый контур.

А тут вдруг — один незаземленный провод!

Но, я думаю, современным электрикам предстоит удивиться еще больше, когда они узнают, что в Россие работает человек, который тоже нашел способ передавать электроэнергию по одному незамкнутому проводу. Инженер Станислав Авраменко делает это уже 15 лет.

Как же осуществляется феноменальное явление, не укладывающееся в рамки общепризнанных представлений? На рисунке показана одна из схем Авраменко. Она состоит из трансформатора Т, линии электропередачи (провода) Л, двух встречно включенных диодов Д, конденсатора С и разрядника Р.

   рис. 1. Передача электроэнергии по одному проводу, cхема Авраменко

Трансформатор имеет ряд особенностей, которые пока (дабы сохранить приоритет) раскрывать не будем. Скажем только, что он схож с резонансным трансформатором Тесла, в котором первичная обмотка питается напряжением с частотой, равной резонансной частоте вторичной обмотки.

Читайте также:  Линеаризация характеристик датчиков

Подключим входные (на рис.— нижние) выводы трансформатора к источнику переменного напряжения. Поскольку два других его вывода между собой не замкнуты (точка 1 просто висит в воздухе), тока наблюдаться в них вроде бы не должно.

 Однако в разряднике возникает искра — происходит пробой воздуха электрическими зарядами! Он может быть непрерывным или прерывным, повторяться с интервалом, зависящим от емкости конденсатора, величины и частоты приложенного к трансформатору напряжения.

Получается, что на противоположных сторонах разрядника периодически накапливается определенное число зарядов. Но поступать туда они могут, по всей видимости, лишь от точки 3 через диоды, выпрямляющие переменный ток, существующий в линии Л. Таким образом в вилке Авраменко (часть схемы правее точки 3) циркулирует постоянный по направлению и пульсирующий по величине ток.

Подключенный к разряднику вольтметр V, при частоте около 3 кГц и напряжении 60 В на входе трансформатора, показывает перед пробоем 10 — 20 кВ. Установленный вместо него амперметр регистрирует ток в десятки микроампер.

На этом “чудеса” с вилкой Авраменко не заканчиваются. При сопротивлениях R1=2 — 5 МОм и R2=2 — 100 МОм (рис. 2) наблюдаются странности при определении выделяющейся на последнем мощности.

Измерив (по общепринятой практике) ток магнитоэлектрическим амперметром А и напряжение электростатическим вольтметром V, перемножив полученные величины, получаем мощность много меньше той, которая определяется точным калориметрическим способом по тепловыделению на сопротивлении R2. Между тем, по всем существующим правилам, они должны совпадать. Объяснения тут пока нет.

Эксперименты с использованием схемы Авраменко

Усложнив схему, экспериментаторы передавали по линии Л мощность, равную 1,3 кВт. Это подтвердили три ярко горевшие лампочки, суммарная мощность которых составляла как раз названную величину.

Опыт проводился 5 июля 1990 года в одной из лабораторий Московского энергетического института. Источником питания служил машинный генератор с частотой 8 кГц. Длина провода Л равнялась 2,75 м.

Интересно, что он был не медным или алюминиевым, которые обычно применяют для передачи электроэнергии (их сопротивление относительно мало), а вольфрамовым! Да к тому же диаметром — 15 мкм! То есть электрическое сопротивление такого провода намного превышало сопротивление обычных проводов той же длины.

По идее, здесь должны происходить большие потери электроэнергии, а провод — раскалиться и излучать тепло. Но этого не было, пока трудно объяснить почему,— вольфрам оставался холодным.

При внимательном взгляде на опыты Авраменко становится ясно, что это не просто экспериментаторские игрушки. Вспомните, какая мощность передавалась по вольфрамовому проводнику, и он не нагревался! То есть линия как бы не имела сопротивления. Так что же она собой представляла — “сверхпроводник” при комнатной температуре? Тут уж дальше и комментировать нечего — насчет практического значения.

Есть, конечно, и теоретические предположения, объясняющие результаты опытов. Не вдаваясь в подробности, скажем, что эффект может быть связан с токами смещения и резонансными явлениями — совпадением частоты напряжения источника питания и собственных частот колебания атомных решеток проводника.

Между прочим, о мгновенных токах в единичной линии писал еще Фарадей, в 30-х годах прошлого века, а в соответствии с электродинамикой, обоснованной Максвеллом, ток поляризации не приводит к выделению на проводнике джоулева тепла — то есть проводник не оказывает ему сопротивления.

Время придет — строгая теория будет создана, а пока инженер Авраменко успешно опробовал передачу электроэнергии по одному проводу на 160 м.

Так же читайте про без проводную передачу электроэнергии в нашей статье «Передача электроэнергии без проводов«

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Источник: https://powercoup.by/elektroenergetika-v-mire/peredacha-elektroenergii-po-odnomu-provodu

Можно ли передавать энергию только по одному проводу?

Об этом широкой общественности впервые сообщил еще в 1991 году журнал «Техника молодежи» и его автор Николай Заев. За прошедшее с тех пор время однозначного трактования явления, зафиксированного Авраменко с товарищами, до сих пор нет. О феномене «Вилки Авраменко» спорят, и значит, тема вполне актуальна.

Как же осуществляется феноменальное явление передачи тока по одному проводу, не укладывающееся в рамки общепризнанных представлений об электротехнике? Здесь мне вспоминается троллейбус, увиденный еще в 1995 году в США, — у него была только одна троллея.

Благодаря записям самого инженера и описаниям Заева известно, что электрическая схема опыта Авраменко состояла из резонансного трансформатора Теслы (назван по имени изобретателя Николы Теслы, первичная обмотка питается напряжением с частотой, равной резонансной частоте вторичной обмотки), единственного проводника линии электропередачи, двух встречно включенных полупроводниковых диодов, конденсатора и разрядника.

При подключении входных выводов резонансного трансформатора к источнику переменного напряжения в разряднике возникает искра — происходит пробой воздуха электрическими разрядами.

Они могут быть как непрерывными, так и прерывающимися (напоминающими разряд электрошокера), повторяются с интервалом, зависящим от емкости конденсатора, величины и частоты приложенного к трансформатору напряжения. На контактах разрядника периодически накапливается определенное число зарядов.

Поступать туда они могут лишь через диоды, выпрямляющие переменный ток, существующий в линии. Таким образом, в опыте Авраменко циркулирует постоянный по роду и пульсирующий по величине и характеру ток.

Отечественные инженеры-экспериментаторы в стенах Московского электротехнического института еще 5 июля 1990 года передавали по линии ток, эквивалентный мощности 1,3 кВт. Электрическое сопротивление вольфрамового провода (диаметром 15 микрометров) превышало сопротивление обычных электрических проводов (из алюминия или меди) той же длины.

Ученые до сих пор спорят: по всем законам физики, должны были происходить большие потери электроэнергии, а провод — раскалиться и излучать тепло. Но, как пишет Н. Заев, — в ходе эксперимента «вольфрам оставался холодным».

Линия с одним проводом, по сути, не имела сопротивления электрическому току (имела сопротивление, близкое к нулю), и представляла собой «сверхпроводник». Эффект связан с токами смещения и с резонансными явлениями — совпадением частоты напряжения источника питания и собственных частот колебания атомных решеток проводника.

Практическое значение этих экспериментов трудно переоценить. Сегодня ученые хотят взять новый рубеж: занимаются разработкой электрооборудования системы электропередачи мощностью 100 (!) кВт.

На оригинальные изобретения Авраменко действительно плодовит, но, как нередко бывает, столь же и несчастлив — в плане их востребованности в своем отечестве.

Мне не удалось найти достоверной информации о практическом применении самых перспективных, на первый взгляд, разработок талантливого инженера и его товарищей, если не считать описанные в популярных журналах комментарии о том, что Авраменко живо интересуются иностранцы (золотая медаль Салона инноваций в Брюсселе и золотая медаль Николы Теслы) и… отечественный «Газпром»; хотя это не означает, что изобретения С. Авраменко не применяют. Возможно, они засекречены: ведь перспективы от использования описанных явления бескрайни, как горизонт, и могут быть ограничены только фантазией читателя. С минимальными потерями можно передавать энергию по любым токопроводящим и даже изолированным веществам. К примеру, по оптоволокну передается информация, а ток — по металлической оплетке кабеля (передача энергии по трубопроводам, патент РФ 2172546 (от 20.08.2001).

Патент 2136515 (10.09.1999) — оборудование для питания трамваев, троллейбусов, электропоездов и электромобилей с помощью одной троллеи взамен обычных двух (по рельсу ток не идет, на манер троллейбусов в США).

Источник: https://ShkolaZhizni.ru/computers/articles/48160/

Передача электрической энергии по проводам

Потеря напряжения в проводах линии. Передача электрической энергии от источника / (рис. 33) к приемнику 2 происходит по проводам, образующим электрическую линию. При передаче энергии возникает потеря напряжения в проводах линии где — сопротивление проводов линии.

В результате этого напряжение 1)г в конце электрической линии оказывается меньше напряжения (Л в начале линии. Потеря напря­жения в проводах линии Д (/., не является постоянной величиной, она колеблется в зависимости от силы тока нагрузки от нуля (при / = 0) до наибольшего значения (при максимальной нагрузке). Кроме того, она зависит от сопротивления Цл проводов линии,

На электрифицированных железных дорогах одним из проводов, соединяющих источник питания — тяговую подстанцию с потребите­лем — электровозом, является контактный провод, а другим — рельсы.

Поэтому под потерей напряжения в проводах Д 1)л в этом случае понимается суммарная потеря напряжения в контактной сети и рельсах.

Потеря напряжения в линии увеличивается по мере удаления электровоза от тяговой подстанции, в соответствии с этим уменьшается и напряжение на его токоприемнике.

Потери мощности з линии и ее к. п. д. При прохождении по ли­нии тока / часть мощности Р, поступающей от источника, теряется в линии, вызывая нагрев проводов, эти потери мощности

Следовательно, приемник электрической энергии, включенный на конце линии, будет получать меньшую мощность —

При увеличении тока / возрастают потери мощности в прово­дах линии Д Рд и уменьшаются к. п. д. линии и напряжение Иг, подаваемое на нагрузку.

Практически электрическую энергию передают по проводам при ц== 0,9ч-0,95, при этом сопротивление проводов линии составляет 5—10 % сопротивления нагрузки и потери энергии в них не пре­вышают 5—10 % передаваемой мощности.

Рассмотрим теперь, как зависят потери мощности в линии и ее к. п. д. от напряжения [7г, при котором осуществляется передача электроэнергии. Потери мощности в проводах линии

Следовательно, чем больше передаваемая мощность Рг и рас­стояние 1Л, на которое она передается, тем больше потери мощности и энергии в проводах; чем больше площадь сечения проводов зл и на­пряжение Сг в линии передачи, тем меньше эти потери, поэтому вы­годнее передавать электрическую энергию при более высоких на­пряжениях.

Принципы расчета проводов. Для правильной работы прием­ников электрической энергии весьма важно, чтобы подаваемое к ним напряжение поддерживалось по возможности постоянным и было равно их номинальному напряжению.

Понижение напряжения вызывает существенное ослабление накала электрических ламп и ухудшение режима работы электродвигателей, а увеличение по срав­нению с номинальным — сокращение срока службы ламп и электри­ческих машин.

Электрические провода обычно рассчитывают по допустимой по­тере напряжения. Потеря напряжения в проводах допускается небольшой по сравнению с напряжением сети для экономии электри­ческой энергии и обеспечения малого колебания напряжения на приемниках.

В электрических сетях различного назначения допусти­мые потери напряжения составляют примерно 2—6 %. Исходя из этих условий и проводят расчет электрических проводов, т. е. подбор площади 5Л их поперечного сечения.

Ее выбирают такой, чтобы при максимальной нагрузке потери напряжения на участке от источника питания до самого удаленного приемника не превышали 2—6 % номинального напряжения.

При электрической тяге выбор площади сечения контактных проводов также производят из усло­вия, чтобы на токоприемнике электровоза действовало напряжение ]

Источник: https://studlib.info/elektronika/2179080-peredacha-yelektricheskoy-yenergii-po-provodam/

Однопроводный ток – реальность, снижающая затраты на передачу энергии в сотни раз! / vit62 пишет / Магов.нет

Идея однопроводной передачи электроэнергии появилась у С.В. Авраменко совершенно случайно более четверти века тому назад. Однажды он, только-только окончивший Ленинградский политехнический институт, снял с себя нейлоновую майку, трещавшую от разрядов статического электричества, и махнул ею около выключенной настольной люминесцентной лампы.

И лампа загорелась! Тогда он взял пластмассовую расческу, натер ее и стал махать возле лампы. И лампа снова зажглась. А ведь в институте учили другому: нужно либо подвести к лампе два конца, анод и катод, либо поместить газоразрядную лампу в переменное электромагнитное поле достаточно высокой частоты.

Авраменко предположил, что статические заряды каким-то образом приводятся в движение, и образуется то самое переменное электромагнитное поле, которое и зажигает газ в лампе. Он стал проводить многочисленные эксперименты со статическим электричеством (которое на сегодняшний день практически не используется).

Читайте также:  Организационные мероприятия в электроустановках

Статический заряд почти невесом, чтобы получить его и переместить в пространстве, тяжелой механической работы производить не надо, мощные и металлоемкие двигатели и генераторы могут оказаться ненужными. Изобретатель старался получить свободный заряд, придать ему направленное перемещение, заставить действовать так же, как и обычный ток в проводах.

Для этого он пытался преобразовать обычный ток из электросети в ток смещения свободных статических зарядов (в так называемые реактивные токи). Первичным источником служили обычные звуковые генераторы, используемые в радиотехнике.

Из литературы он узнал о трансформаторе Теслы (этот ученый также пытался передавать на расстояние электрическую мощность с помощью реактивных токов) и использовал этот опыт. Трансформатор Авраменко Дело пошло. Сначала появились малые токи, 2-3 Вт, потом — большей мощности.

В результате Станиславу Викторовичу удалось сделать то, что до этого не получалось ни у кого: создать систему передачи тока свободных статических зарядов по одному проводу.

На выходе созданного Авраменко трансформатора мы имеем обычный переменный ток, который попал туда из обычной же электросети, только с полной асимметрией выходного напряжения: один конец вторичной обмотки остается под нулевым потенциалом, а вся синусоида подаваемого тока находится на другом ее конце.

В трансформаторе Теслы второй конец был заземлен, небольшой потенциал на нем все-таки был, нулевого добиться ему не удалось. А в трансформаторе Авраменко подсоединяем к «нагруженному» электроду всего один провод и гоним электричество по нему.

В научных журналах (например, «Изобретатель и рационализатор»), заинтригованных уникальным явлением, пытались объяснить природу этого «однопроводного электричества». Рассказывалось и о трансформаторах без сердечников, подобных трансформаторам Теслы, о «вилке Авраменко» -включенных особым образом диодах.

С их помощью удавалось накачивать энергией некую емкость, из которой потом получать эту энергию и перемещать ее по незамкнутой цепи, то есть по одному проводу. Причем течет она не внутри этого провода, а как бы вдоль него. По словам самого Авраменко, «поле перемещается вдоль провода как по волноводу». Из теории электричества известно, что токи смещения закону Джоуля — Ленца не подчиняются. Стало быть, сечение этого провода значения не имеет, он может быть тоньше волоса, его задача — лишь указывать направление. Кроме того, провод не нагревается, и потерь энергии почти нет. В системе Авраменко ток проводимости из сети выпрямляется, преобразуется в реактивный ток нужной частоты, который передается по одному проводнику на любое расстояние, а там вновь преобразуется в обычный ток проводимости, заставляющий гореть лампы, крутиться моторы, работать лазеры и нагревать электроприборы.

Преимущества однопроводного электричества

Полного теоретического объяснения работы однопроводной системы нет и сегодня. Вопросы остаются, светила электротехники ответа на них не находят. И тем не менее возможность передачи энергии по одному проводу Авраменко доказал экспериментально. Это было около десяти лет назад.

За прошедшее с этого момента время Авраменко удалось установить уникальные свойства однопроводной сети. Прежде всего выявились огромные преимущества однопроводной передачи электроэнергии на расстояние. При передаче ее обычным способом 10-15% энергии теряется на нагрев проводов (джоулево тепло).

Для однопроводной же передачи можно брать настолько тонкий провод, насколько это позволяют соображения прочности, скажем, 2-4 мм в диаметре. Если в современных цепях плотность передаваемого тока не превышает 6-7 А/мм2, то по однопроводниковой она достигает 428 А/мм2 при мощности в 10 кВт.

Причем провод не нагревается, а джоулевы потери уменьшаются почти в сто раз. Во столько же раз, соответственно, уменьшается расход меди на провода. Мало того, провода могут быть сделаны из обычной стали: ведь их электропроводимость значения не имеет, их задача — указывать направление тока.

Что это значит? А это значит -происходит колоссальная экономия на опорах и проводах линий электропередач, а также контактных линий электротранспорта. Их можно сделать значительно менее громоздкими и материалоемкими.

Электрический ток… по трубопроводам

Станислав Викторович стал приглашать на демонстрацию опытов различных специалистов, руководителей Минэнерго, ученых из ФИАН, МИФИ и пр. Ни расчетам, ни своим глазам никто не верил.

Первым человеком, поверившим Авраменко, стал директор Всероссийского НИИ электрификации сельского хозяйства (ВНИИЭСХ), академик РАСХН, профессор, д. т. н. Д.С. Стребков. Он первый понял, что все демонстрируемое изобретателем вполне подчиняется законам физики и электротехники.

Дмитрий Семенович пригласил Авраменко к себе в институт, создал там соответствующую лабораторию, выделил оборудование, выбил деньги, и опыты стали производиться на гораздо более серьезной основе.

Если раньше у Авраменко была лишь небольшая десятиваттная установка, то во ВНИИЭСХе изготовили опытную установку мощностью в 100 Вт, позволившую провести ряд важных экспериментов.

Например, было доказано, что однопроводное электричество можно передавать не только по медному проводу. Как происходит такой эксперимент? Выходящий из трансформатора Авраменко и батареи конденсаторов, где генерируются мощные статические заряды, стальной провод ныряет в лоток с водой, за которым идет графитовая нить, затем в лоток с грунтом (лотки, разумеется, изолированы).

В линии специально устроены разрывы, в них возникают дуговые разряды между проводом и водой, землей, графитом. По проводу ползает однопроводная троллея (макет троллейбусной, например), отбирающая энергию для находящихся тут же потребителей. В конце линии подключена лампочка. Ток проходит по всем этим проводникам и зажигает ее.

Что этот опыт доказывает? А то, что можно постоянно и без больших потерь передавать энергию по любым токопроводящим изолированным веществам. Например — по трубопроводам, оптоволоконным линиям (по волокну передается информация, а ток — по металлической оплетке кабеля) и т.п. (патент РФ № 2172546).

А раз так — то можно изобрести массу машин и устройств, использующих это явление.

Не воруйте провода, они… стальные!

Авраменко совместно со Стребковым и к.т.н. А.И. Некрасовым, руководящим лабораторией ВНИИЭСХа, разработали дождевальную машину, идущую вдоль арыка или лотка с водой и получающую из них не только воду, но и энергию для своей работы.

Еще одна область применения (патент № 2136515) — оборудование для питания трамваев, троллейбусов, электропоездов и электромобилей с помощью одной троллеи взамен обычных двух (причем при этом по рельсу ток не идет!), а также — оборудование для питания мобильных электроагрегатов, вроде тракторов, аэростатов, вертолетов по сверхтонкому и легкому кабелю (патент № 2158206).

Мало того, реактивные токи установки Авраменко можно передавать по лазерному лучу вообще без проводов (патент № 2143735), а за пределами атмосферы — и по электронному лучу (патент № 2163376). Но корифеи все не верили, специальные журналы в публикациях отказывали: «Большие мощности все равно невозможно передать на расстояние. Сделайте киловаттную установку».

Ну, так ведь и сделали! Тут призадумались уже и специалисты. Первым всерьез заинтересовался «Газпром» — организация, далеко не бедная и на перспективные разработки денег не жалеющая. Вдоль газопроводов сейчас обязательно устраивают линии электропередачи для катодной защиты, питания перекачивающих насосов и для других эксплуатационных служб.

Линии эти стоят дорого, провода из цветных металлов воруют. А при однопроводной передаче энергии можно протянуть стальной провод или даже пустить ток по самой трубе.

Воробей не сядет

«Газпром» спонсировал изготовление еще более мощной установки, на 20 кВт. Ее сделали с запасом: Д. С. Стребков утверждает, что она выдаст и 100 кВт. Установленный в начале этой линии высокочастотный трансформатор генерирует мощные электростатические заряды, которые концентрируются вдоль линии к резонансному контуру понижающего трансформатора Теслы и через выпрямитель отводятся к нагрузке, то есть к потребителям. Передает установка энергию по проводку толщиной всего в 80-100 мкм: его можно увидеть, только подойдя вплотную. Он отчаянно вибрирует, когда установка включена, иной раз даже отрывается от изолятора (разумеется, в реальных условиях столь тонкий провод никто ставить не собирается, он разорвется, даже если на него сядет воробей). И тем не менее по этому волоску течет ток, который питает 24 киловаттных лампы, мощный электромотор и пр. Такая система имеет в сотни раз лучшие электрические параметры, чем традиционные двух-трехпроводные. При этом в конструкции установки применены стандартные, серийно выпускаемые отечественной промышленностью узлы: например, преобразователь, применяемый при термообработке труб, конденсаторы и пр. Между тем НПО «Сапфир» по заказу ВНИИЭСХа разрабатывает в настоящее время во много раз меньшие преобразователи на тиристорах, так что можно ожидать, сверх всего прочего, что установка станет гораздо более компактной.

Электротрактор без барабана и коагулятор в кармане

Применение принципиально новой системы подачи электроэнергии позволит значительно упростить и удешевить строительство троллейбусных и трамвайных линий или, допустим, даст возможность устанавливать на автомобилях электропривод с «антенной», чтобы водители, подъехав к устроенным повсеместно однопроводным линиям, подсоединялись к ним и ехали куда угодно, отключив ДВС и не загрязняя атмосферу. Кроме того, можно было бы вернуться и к электротракторам, работающим от кабеля. От них в свое время отказались из-за того, что барабан кабеля, устанавливаемый на тракторе, весил 3 тонны. Теперь же его вес составит не более 30 кг. Да и без барабана можно обойтись. Можно создать аэростатное телевидение, установив ретрансляторы километрах в десяти над землей. Или устроить аэростатную же систему мониторинга огромных площадей лесов или полей. Сейчас только вес кабелей мешает этому.

Но и это еще не все. Энергию по лазерным и электронным лучам можно передавать даже на спутники и ракеты! Но это пока только будущее.

Однако вот вам настоящее: коагуляторы крови, изготовленные с помощью однопроводной системы. Эти приборы применяют для остановки крови при ранах и операциях, они как бы сваривают крохотной дугой электроплазмы края разорванных сосудов.

Существующие сегодня в мире коагуляторы мощностью 8 Вт представляют собой громоздкую тумбу, стационарную или на колесах, весом около сотни килограммов, охлаждаемую водой из водопровода и потребляющую более киловатта энергии.

Точно такой же мощности и еще более эффективного действия коагулятор, изготавливаемый во ВНИИЭСХе, питается от обычных аккумуляторных батареек, весит несколько сот граммов, помещается в «дипломате» или бардачке автомобиля, так что может работать и в полевых условиях, и дома.

Тем более что его стоимость сегодня составит примерно $1000 (против 45-60 тыс. $ для громоздких зарубежных аналогов). Он может использоваться и уже используется не только в клиниках, но и в салонах красоты, для уничтожения бородавок, папиллом, татуировок и пр.

Сегодня работами Авраменко и его коллег весьма пристально интересуются иностранцы. Изобретения были отмечены золотой медалью Салона инноваций в Брюсселе и золотой медалью Николы Теслы, выдаваемой за выдающиеся работы в области электротехники.

Англичане и японцы оплатили международное патентование, причем американцы выдали патент, в котором работы российских ученых названы «букетом открытий». С Индией ведутся переговоры о поставке демонстрационной установки в 25 кВт. Но увы, увы и еще раз увы! О широком, массовом применении однопроводного тока в России пока приходится только мечтать.

Источник информации: eprussia.ru

Только зарегистрированные и авторизованные пользователи могут оставлять комментарии.

Источник: http://magov.net/blog/1323.html

Ссылка на основную публикацию