Диэлектрики в электрическом поле

Проводники и диэлектрики в электрическом поле

Проводники в электрическом поле.Проводники — это вещества, характеризующиеся наличием в них боль­шого количества свободных носителей зарядов, способ­ных перемещаться под действием электрического поля. К проводникам относятся металлы, электролиты, уголь.

В металлах носителями свободных зарядов являются электроны внешних оболочек атомов, которые при взаи­модействии атомов полностью утрачивают связи со «своими» атомами и становятся собственностью всего проводника в целом.

Свободные электроны участвуют в тепловом движении подобно молекулам газа и могут перемещаться по металлу в любом направлении.

В металлическом теле (рис. 1.4) под действием внеш­него электрического поля, имеющего напряженность Е, свободные электроны перемещаются навстречу линиям напряженности.

Явление разделения зарядов проводника внешним электрическим полем называется электростатической индукцией.

В результате разделения зарядов в проводнике создается внутреннее электрическое поле с напряжен­ностью Ев, направленное противо­положно внешнему. Под действием поля смещается только часть электронов проводника, необходимая для созда­ния Ев, уравновешивающего Е.

Если бы результирующая напряженность поля внутри проводника была больше нуля, продолжалось бы раз­деление зарядов под ее действием. Внутри проводника электрическое поле отсутствует.

Это свойство на прак­тике используется для электростатического экра­нирования, т. е. защиты какого-либо устройства, например измерительного механизма прибора, от влия­ния внешних электрических полей.

Прибор помещают в металлический кожух, называемый экраном.

Диэлектрикив электрическом поле.В диэлектриках практически отсутствуют свободные носители зарядов. Все носители зарядов диэлектриков входят в состав их молекул, связаны между собой и под действием внешнего поля могут смещаться лишь на очень малые расстояния: в пределах молекулы или атома.

Многие диэлектрики имеют полярные молекулы. При электрической нейтральности молекулы в целом ее поло­жительный и отрицательный заряды расположены асим­метрично, что позволяет представить полярные молекулы так называемыми электрическими диполями, т. е. как пару разноименных зарядов, находящихся на небольшом расстоянии друг от друга.

При отсутствии внешнего поля молекулы диэлектрика ориентированы произвольно. Во внешнем поле (рис. 1.5)

Рис. 1.5

на каждый диполь действуют две силы, стремящиеся его повернуть. Смещение зарядов или ориентация дипо­лей под действием электрического поля называется поляризацией диэлектрика.

Результатом поляризации диэлектрика является обра­зование в нем собственного электрического поля, направ­ленного встречно внешнему (рис. 1.5.)

Диэлектрик ослабляет электрическое поле. Величина, показывающая, во сколько раз уменьшится напряжен­ность поля, если вместо вакуума применить диэлектрик, называется относительнойдиэлектрической проницаемостью ε.

Диэлектрическая проницаемость — одна из важней­ших характеристик диэлектриков. Ее значения для раз­личных материалов приводятся в справочниках. Так, для слюды ε = 4—6, фарфора 5—7,5, бумаги 2—3, стекла 5,5—10, воздуха 1 и т. д.

Под действием электрического поля в диэлектрике наблюдается рассеяние части энергии поля, которая превращается в теплоту. Значение этой энергии в единицу времени (мощность) принято называть диэлектриче­скими потерями.

Диэлектрические потери в постоян­ном электрическом поле обусловлены протекающим через диэлектрик током (в реальном диэлектрике всегда содержится небольшое количество свободных носителей зарядов, создающих ток).

В переменном поле к ним добавляются потери, связанные с поляризацией ди­электрика.

Диэлектрические потери вызывают нагрев изоляцион­ных конструкций электроустановок и ухудшают условия их работы.

С другой стороны, нагревание некоторых веществ за счет диэлектрических потерь используется для их сушки или ускорения химических реакций.

Диэлектрики сохраняют свои электроизоляционные свойства до определенных значений напряженности поля.

При испытаниях диэлектриков, повышая напряженность электрического поля, достигают таких ее значений, при которых наступает пробой диэлектрика (разрушение его действием сильного электрического поля).

Напряжен­ность поля, при которой наступает пробой диэлектрика, называется пробивной напряженностью Епр или электрической прочностью диэлектрика, а напря­жение при пробое — пробивным напряжени­ем Uпр..

Электрическая прочность — основное свойство ди­электриков. Электрическая прочность воздуха воднородном поле — 30 кВ/см, фарфора—150 кВ/см, слюды — 500 кВ/см и т. д.

Рабочие напряженности диэлектриков принимают в несколько раз (например, в 3 раза) меньше их электри­ческой прочности исходя из требований надежности.

Электроизоляционные материалы.Отдельные части электрических устройств, имеющие разные потенциалы (провода электрических линий, обмотки трансформаторов, полюсы генераторов и т. д.

) изолируются друг от друга и от земли специальными материалами, которые назы­ваются электроизоляционными.

В качестве электроизоля­ционных материалов применяются газообразные, жидкие и твердые диэлектрики.

Из газообразных диэлектриков наибольшее значение имеет воздух, обладающий малыми электропро­водностью и диэлектрическими потерями. Однако электри­ческая прочность воздуха значительно ниже, чем у боль­шинства жидких и твердых диэлектриков.

Жидкие диэлектрики (нефтяные масла, синте­тические жидкости) имеют хорошие электроизоляцион­ные свойства, с их помощью осуществляется гашение дуги в высоковольтных выключателях и охлаждение маслонаполненных аппаратов (за счет циркуляции масла). Недостатком жидких диэлектриков является резкое снижение электроизоляционных свойств при увлажнении и загрязнении.

Из твердых диэлектриков в электрических устройствах применяют:

волокнистые электроизоляционные материалы (ткань, стеклоткань, картон, бумага и др.) — для электроизоля­ции проводов, кабелей, электрических машин, аппаратов, при производстве лакотканей, гибких трубок, слоистых пластиков и т. д.;

слоистые пластики, получаемые прессованием с раз­личными связующими бумаги (гетинакс), тканей (тексто­лит, стеклотекстолит) для изготовления панелей, осно­ваний печатных схем, корпусов, прокладок и других деталей;

слюду и слюдяные изделия — как основной диэлектрик конденсаторов и межэлектродной изоляции в электрон­ных лампах, а также для изоляции электрических машинв тех случаях, если необходима повышенная надежность;

резину — для электроизоляции проводов и кабелей, изготовления гибких трубок, прокладок;

пластмассы — для изготовления фасонных деталей и узлов, требующих сочетания хороших электрических и механических свойств, электрических аппаратов и при­боров, мелких электрических машин и трансформаторов;

керамические материалы — для изготовления высоко­вольтных изоляторов, конденсаторов, каркасов катушек, штепсельных разъемов.

Особую группу твердых диэлектриков составляют сегнетоэлектрики и электреты.

Сегнетоэлектрики (сегнетовая соль, титанат бария) в отличие от обычных диэлект­риков обладают способностью самопроизвольно (без внешнего электрического поля) поляризоваться.

Они имеют сильную зависимость диэлектрической проницае­мости от напряженности поля, давления и температуры, а также большие значения относительной диэлектри­ческой проницаемости.

Электреты интересны тем, что способны длительное время находиться в наэлектризованном состоянии после снятия внешнего воздействия, вызвавшего поляризацию. Они являются электрическими аналогами постоянных магнитов.

Электреты получают из восков и смол, полиме­ров, неорганических диэлектриков, охлаждая их в сильном электрическом поле (термоэлектреты) или облучая све­том фотопроводящие диэлектрики в сильном электри­ческом поле (фотоэлектреты).

Применяются электреты в качестве источников постоянного электрического поля в технике связи (микрофоны и телефоны), как чувстви­тельные датчики в дозиметрии, как пьезодатчики и т. д

КОНДЕНСАТОРЫ

Электрические конденсаторы предназначены для создания электрического поля и хранения его энергии.

Электрический конденсатор представляет собойдва проводника (обкладки), разделенные слоем диэлект­рика. Промышленностью выпускаются бумажные, элект­ролитические, керамические и другие конденсаторы. В бумажном конденсаторе проводниками являются две длинные ленты алюминиевой фольги, а диэлектриком — ленты парафинированной бумаги.

В электролитическом конденсаторе роль диэлектрика выполняет тонкий слой окиси на поверхности обкладки из алюминиевой фольги. Конструкция плоского конденсатора показана на рис. 1.6,а; его условное обозначение — на рис. 1.6,б. Конденсатор обладает свойством накапливать и удержи­вать на своих обкладках равные по величине и разные по знаку электрические заряды.

Под зарядом q конден­сатора понимают абсолютное значение заряда одной из обкладок.

Конденсатор можно сравнить с газовым баллоном. Баллон заполняется газом под давлением, а конденса­тор заряжается под действием напряжения (рис. 1.7).

Рис. 1.6 Рис. 1.7

Чем больше напряжение, тем больше заряд конденсатора, поэтому «вместимость» конденсатора оценивается не зарядом, а отношением q/U, которое называется емкостью конденсатора:

C = q/U. (1.6)

Изменение напряжения влечет за собой прямо пропор­циональное изменение заряда конденсатора, поэтому ем­кость конденсатора от напряжения не зависит. Емкость конденсатора численно равна заряду при напряжении один вольт (1).

Единица емкости — фарад (Ф). На практике пользуются более мелкими единицами — микрофарад (1 мкФ = 10-6 Ф) или пикофарад (1 пФ = 10 -12 Ф). Емкость плоского конденсатора определяется по фор­муле

C = εε0S/d, (1.7)

где S — площадь обкладок; d — расстояние между обкладками. Для создания конденсаторов большой емкости применяют диэлектрики с большой диэлектри­ческой проницаемостью ε.

Следует отметить, что емкостью обладают не только конденсаторы, но и другие элементы электрических устройств, на которых накапливается электрический заряд (провода электрических линий, электроды электронных ламп и др.). Однако нередко емкостью этих устройств принебрегают.

При зарядке конденсатора (рис. 1.7) по проводникам, которыми подключены его обкладки к источнику напря­жения, протекает электрический ток. После зарядки ток отсутствует.

Почему? Поступающие в процессе зарядки на обкладки конденсатора заряды отталкивают от себя одноименные вновь прибывающие заряды, т. е. ока­зывают им противодействие.

Возрастающее при зарядке напряжение конденсатора Uc направлено встречно току и стремится уравновесить действие напряжения источ­ника U {2).

Зарядка конденсатора продолжается до тех пор, пока Uc < U, и прекращается при

U=Uс

(действие равно противодействию).

Источник напряжения, доставляя заряды на обкладки конденсатора (рис. 1.7), производит работу, значение которой определяется из формулы (1.4): A = Uq. Эта работа численно равна площади графика q(U) (рис. 1.8).

Зависимость заряда q на обкладках конденсатора от напряжения U имеет вид, показанный на рис. 1.9. Площадь графика этой зависимости (по аналогии с рис. 1.8) численно равна энергии электрического поля конденсатора Wэ, которая может быть определена как площадь прямоугольного треугольника:

Wэ = qU/2. (1.8)

На создание электрического поля конденсатора расходуется только

половина работы источника A = qU. Вторая половина этой работы расходуется на нагрев проводов, по которым заряды проходят на обкладки конденсатора.

Из формулы (1.6) q = CU. Подставив это выражение в (1.8), получаем еще одну формулу для энергии конден­сатора:

W3 = CU2/2. (1.9)

Во многих случаях для получения нужной емкости конденсаторы приходится соединять в группу, которая называется батареей. Различают параллельное и по­следовательное соединение конденсаторов.

При параллельном подключении С1, С2, С3 к источнику напряжения (рис. 1.10) все конденсаторы зарядятся до одинакового напряжения, равного напряжению источника U = U1 = U2 = U3 (так как каждый конденсатор присо­единен к полюсам источника). При этом энергия бата­реи Wэ.б , в соответствии с законом сохранения энергии,

Wэ.б=Wэ1+Wэ2+Wэ3(1.10)

Используя формулы (1.9) и (1.10), получаем (учитывая равенство напряжений)

Сб = С1 + С2 + С3

Емкость батареи параллельно соединенных конденса­торов равна сумме емкостей отдельных конденсаторов (3). Рассмотрим последовательное соединение конденсато­ров (рис. 1.11).

На обкладки 1 и 4 заряды поступают от источника питания. Заряды на внутренних обкладках 2 и 3 появляются за счет электростатической индукции. В резуль­тате зарядятся все обкладки конденсаторов.

Разряжаясь,батарея отдает заряды с внешних обкла­док. Заряды внутренних обкладок нейтрализуют друг друга, поэтому

qб = q1 = q2

При последовательном соединении конденсаторов за­ряд батареи и каждого конденсатора в отдельности один и тот же (4).

Из формулы (1.6) U — q/C, т. е. при последователь­ном соединении конденсаторов, напряжения на них рас­пределяются обратно пропорционально емкостям от­дельных конденсаторов.

Используя уравнения (1.10) и (1.8) и учитывая равен­ство зарядов, получаем

U=U1+U2

(действие равно сумме противодействий)

Напряжение батареи последовательно соединенных конденсаторов равно сумме напряжений отдельных конденсаторов (5). Поэтому на практике последовательное соединение конденсаторов применяется в тех случаях, когда напряжение источника превышает рабочее напря­жение конденсаторов.

Из положения (5) следует, что q/Cб = q/C1 + q/C2, т. е.

l/Cб =l/С1 + l/C2. (1.11)

По этой формуле рассчитывается емкость батареи последовательно соединенных конденсаторов. При после­довательном соединении п одинаковых конденсаторов емкость батареи на основании формулы (1.11)

Сб = С/п.

ТЕМА 2. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ОСТОЯННОГО ТОКА

Читайте также:  Ремонт воздушных линий электропередачи

Дата добавления: 2016-09-06; просмотров: 3212;

Источник: https://poznayka.org/s58248t1.html

Проводники и диэлектрики в электрическом поле

Вещество, внесенное в электрическое поле, может существенно изменить его. Это связано с тем, что вещество состоит из заряженных частиц.

В отсутствие внешнего поля частицы распределяются внутри вещества так, что создаваемое ими электрическое поле в среднем по объемам, включающим большое число атомов или молекул, равно нулю.

При наличии внешнего поля происходит перераспределение заряженных частиц, и в веществе возникает собственное электрическое поле. Полное электрическое поле складывается в соответствии с принципом суперпозиции из внешнего поля и внутреннего поля, создаваемого заряженными частицами вещества.

Вещество многообразно по своим электрическим свойствам. Наиболее широкие классы вещества составляют проводники и диэлектрики.

Основная особенность проводников – наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника. Типичные проводники – металлы.

В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки.

В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают не скомпенсированные положительные и отрицательные заряды (рис. 1.5.1).

Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды – индукционными зарядами.

Индукционные заряды создают свое собственное поле,  которое компенсирует внешнее поле во всем объеме проводника:

 (внутри проводника).

Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.

Рисунок 1.5.1.Электростатическая индукция

Все внутренние области проводника, внесенного в электрическое поле, остаются электронейтральными.

Если удалить некоторый объем, выделенный внутри проводника, и образовать пустую полость, то электрическое поле внутри полости будет равно нулю.

На этом основана электростатическая защита – чувствительные к электрическому полю приборы для исключения влияния поля помещают в металлические ящики (рис. 1.5.2).

Рисунок 1.5.2.Электростатическая защита. Поле в металлической полости равно нулю

Так как поверхность проводника является эквипотенциальной, силовые линии у поверхности должны быть перпендикулярны к ней.

В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

При внесении диэлектрика во внешнее электрическое поле  в нем возникает некоторое перераспределение зарядов, входящих в состав атомов или молекул.

В результате такого перераспределения на поверхности диэлектрического образца появляются избыточные нескомпенсированные связанные заряды.

Все заряженные частицы, образующие макроскопические связанные заряды, по-прежнему входят в состав своих атомов.

Связанные заряды создают электрическое поле  которое внутри диэлектрика направлено противоположно вектору напряженности внешнего поля. Этот процесс называется поляризацией диэлектрика. В результате полное электрическое поле внутри диэлектрика оказывается по модулю меньше внешнего поля

Физическая величина, равная отношению модуля напряженности внешнего электрического поля в вакууме к модулю напряженности полного поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества.

Существует несколько механизмов поляризации диэлектриков. Основными из них являются ориентационная и электронная поляризации. Эти механизмы проявляются главным образом при поляризации газообразных и жидких диэлектриков.

Ориентационная или дипольная поляризация возникает в случае полярных диэлектриков, состоящих из молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают.

Такие молекулы представляют собой микроскопические электрические диполи – нейтральную совокупность двух зарядов, равных по модулю и противоположных по знаку, расположенных на некотором расстоянии друг от друга.

Дипольным моментом обладает, например, молекула воды, а также молекулы ряда других диэлектриков (H2S, NO2 и т. д.).

При отсутствии внешнего электрического поля оси молекулярных диполей из-за теплового движения ориентированы хаотично, так что на поверхности диэлектрика и в любом элементе объема электрический заряд в среднем равен нулю.

При внесении диэлектрика во внешнее поле  возникает частичная ориентация молекулярных диполей. В результате на поверхности диэлектрика появляются нескомпенсированные макроскопические связанные заряды, создающие поле направленное навстречу внешнему полю (рис. 1.5.3).

Рисунок 1.5.3.Ориентационный механизм поляризации полярного диэлектрика

Поляризация полярных диэлектриков сильно зависит от температуры, так как тепловое движение молекул играет роль дезориентирующего фактора.

Электронный или упругий механизм проявляется при поляризации неполярных диэлектриков, молекулы которых не обладают в отсутствие внешнего поля дипольным моментом.

Под действием электрического поля молекулы неполярных диэлектриков деформируются – положительные заряды смещаются в направлении вектора а отрицательные – в противоположном направлении. В результате каждая молекула превращается в электрический диполь, ось которого направлена вдоль внешнего поля.

На поверхности диэлектрика появляются нескомпенсированные связанные заряды, создающие свое поле, направленное навстречу внешнему полю Так происходит поляризация неполярного диэлектрика (рис. 1.5.4).

Деформация неполярных молекул под действием внешнего электрического поля не зависит от их теплового движения, поэтому поляризация неполярного диэлектрика не зависит от температуры. Примером неполярной молекулы может служить молекула метана CH4.

У этой молекулы четырехкратно ионизированный ион углерода C4– располагается в центре правильной пирамиды, в вершинах которой находятся ионы водорода H+.

При наложении внешнего электрического поля ион углерода смещается из центра пирамиды, и у молекулы возникает дипольный момент, пропорциональный внешнему полю.

Рисунок 1.5.4.Поляризация неполярного диэлектрика

Электрическое поле связанных зарядов, возникающее при поляризации полярных и неполярных диэлектриков, изменяется по модулю прямо пропорционально модулю внешнего поля.

В очень сильных электрических полях эта закономерность может нарушаться, и тогда проявляются различные нелинейные эффекты.

В случае полярных диэлектриков в сильных полях может наблюдаться эффект насыщения, когда все молекулярные диполи выстраиваются вдоль силовых линий.

В случае неполярных диэлектриков сильное внешнее поле, сравнимое по модулю с внутриатомным полем, может существенно деформировать атомы или молекулы вещества и изменить их электрические свойства. Однако, эти явления практически никогда не наблюдаются, так как для этого нужны поля с напряженностью порядка 1010–1012 В/м. Между тем, гораздо раньше наступает электрический пробой диэлектрика.

У многих неполярных молекул при поляризации деформируются электронные оболочки, поэтому этот механизм получил название электронной поляризации. Этот механизм является универсальным, поскольку деформация электронных оболочек под действием внешнего поля происходит в атомах, молекулах и ионах любого диэлектрика.

В случае твердых кристаллических диэлектриков наблюдается так называемая ионная поляризация, при которой ионы разных знаков, составляющие кристаллическую решетку, при наложении внешнего поля смещаются в противоположных направлениях, вследствие чего на гранях кристалла появляются связанные (нескомпенсированные) заряды.

Примером такого механизма может служить поляризация кристалла NaCl, в котором ионы Na+ и Cl– составляют две подрешетки, вложенные друг в друга. В отсутствие внешнего поля каждая элементарная ячейка кристалла NaCl (см. Часть I § 3.6 ) электронейтральна и не обладает дипольным моментом.

Во внешнем электрическом поле обе подрешетки смещаются в противоположных направлениях, т. е. кристалл поляризуется.

При поляризации неоднородного диэлектрика связанные заряды могут возникать не только на поверхностях, но и в объеме диэлектрика.

В этом случае электрическое поле связанных зарядов и полное поле могут иметь сложную структуру, зависящую от геометрии диэлектрика.

Утверждение о том, что электрическое поле в диэлектрике в ε раз меньше по модулю по сравнению с внешним полем строго справедливо только в случае однородного диэлектрика, заполняющего все пространство, в котором создано внешнее поле. В частности:

Если в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд Q, то напряженность поля создаваемого этим зарядом в некоторой точке, и потенциал φ в ε раз меньше, чем в вакууме:

Источник: http://www.its-physics.org/provodniki-i-dielektriki-v-elektricheskom-pole

Инфофиз — мой мир..

По электрическим свойствам все вещества разделяют на два больших класса — вещества, которые проводят электрический ток (проводники) и вещества, которые не проводят электрический ток (диэлектрики, или изоляторы). 

Мы знаем, что все вещества состоят из атомов, которые, в свою очередь, состоят из заряженных частиц. Если внешнее поле вокруг вещества отсутствует, то его частицы распределяются так, что суммарное электрическое поле внутри вещества равно нулю.

Если вещество поместить во внешнее электрическое поле, то поле начет действовать на заряженные частицы и они перераспределяться так, что в веществе возникнет собственное электрическое поле.

Полное электрическое поле складывается из внешнего поля и внутреннего поля создаваемого заряженными частицами вещества.

Проводник — это тело или материал, в котором электрические заряды начинают перемещаться под действием сколь угодно малой силы. Поэтому эти заряды называют свободными.

В металлах свободными зарядами являются электроны, в растворах и расплавах солей (кислот и щелочей) — ионы.

Диэлектрик — это тело или материал, в котором под действием сколь угодно больших сил заряды смещаются лишь на малое, не превышающее размеров атома расстояние относительно своего положения равновесия. Такие заряды называются связанными.

Рассмотрим подробнее эти классы веществ.

Проводники в электрическом поле.

Проводниками называют вещества, проводящие электрический ток.

Типичными проводниками являются металлы.

Основная особенность проводников – наличие свободных зарядов ( в металлах это электроны), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника.

В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки.

В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды.

Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды – индукционными зарядами.

   Явление перераспределения зарядов внутри проводника под действием внешнего электрического поля называется электростатической индукцией.

  Заряды, появляющиеся на поверхности проводника, называются индукционными зарядами.

   Индукционные заряды создают свое собственное поле , которое компенсирует внешнее поле во всем объеме проводника:

  (внутри проводника).

   Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.

   Диэлектрики в электрическом поле.

   Диэлектриками (изоляторами) называют вещества, не проводящие электрического тока.

   В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

   При внесении диэлектрика во внешнее электрическое поле в нем возникает некоторое перераспределение зарядов, входящих в состав атомов или молекул.

В результате такого перераспределения на поверхности диэлектрического образца появляются избыточные нескомпенсированные связанные заряды.

Все заряженные частицы, образующие макроскопические связанные заряды, по-прежнему входят в состав своих атомов.

   Связанные заряды создают электрическое поле, которое внутри диэлектрика направлено противоположно вектору напряженности внешнего поля. Этот процесс называется поляризацией диэлектрика.

   Электрической поляризацией называют особое состояние вещества, при котором электрический момент некоторого объёма этого вещества не равен нулю.

   В результате полное электрическое поле внутри диэлектрика оказывается по модулю меньше внешнего поля.

   Физическая величина, равная отношению модуля напряженности внешнего электрического поля в вакууме к модулю напряженности полного поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества.

   Диэлектрическая проницаемость среды показывает, во сколько раз напряженность поля в вакууме больше, чем в диэлектрике. Это величина безразмерная (нет единиц измерения).

   При поляризации неоднородного диэлектрика связанные заряды могут возникать не только на поверхностях, но и в объеме диэлектрика.

В этом случае электрическое поле связанных зарядов и полное поле могут иметь сложную структуру, зависящую от геометрии диэлектрика.

Читайте также:  Способы получения паяных соединений

Утверждение о том, что электрическое поле  в диэлектрике в ε раз меньше по модулю по сравнению с внешним полем строго справедливо только в случае однородного диэлектрика, заполняющего все пространство, в котором создано внешнее поле. В частности:

   Если в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд q, то напряженность поля, создаваемого этим зарядом в некоторой точке, и потенциал φ в ε раз меньше, чем в вакууме:

   Существует несколько механизмов поляризации диэлектриков. Основными из них являются ориентационная, электронная и ионная поляризации. Ориентационная и электронная механизмы проявляются главным образом при поляризации газообразных и жидких диэлектриков, ионная — при поляризации твердых диэлектриков.

Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников.

Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U.

Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости.

Электроемкостью (электрической емкостью) проводников называется физическая величина, характеризующая способность проводника или системы проводников накапливать электрический заряд.

Электроемкость находится как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:


 В системе СИ единица электроемкости называется фарад [Ф]: 

Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники.

Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками.

Простейший конденсатор – плоский конденсаторсистема из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.

Электрическое поле плоского конденсатора в основном локализовано между пластинами; однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния.

В целом ряде задач можно приближенно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками.

Электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними.

Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:

Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы.

Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2.

Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L.

Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:

   — сферический конденсатор

   — цилиндрический конденсатор

Для получения заданного значения емкости конденсаторы соединяются между собой, образуя батареи конденсаторов.

1) При параллельном соединении конденсаторов соединяются их одноименно заряженные обкладки.

Напряжения на конденсаторах одинаковы     U1 = U2 = U,  заряды равны q1 = С1U и    q2 = С2U.

Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом qq1 + q2 при напряжении между обкладками равном U. Отсюда следует  или С = С1 + С2

Таким образом, при параллельном соединении электроемкости складываются.

2) При последовательном соединении конденсаторов соединяют разноименно заряженные обкладки

Заряды обоих конденсаторов одинаковы    q1 = q2 = q,  напряжения на них равны  и 

Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками UU1 + U2.

Следовательно,   или  

При последовательном соединении конденсаторов складываются обратные величины емкостей.

Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.

Т.е. в случае n конденсаторов одинаковой емкости С емкость батареи

при параллельном соединении Собщ = nС

при последовательном соединении Собщ = С/n

Если обкладки заряженного конденсатора замкнуть металлическим проводником, то по цепи пойдет электрический ток, лампочка загорится и будет гореть до тех пор, пока конденсатор не разрядится. Значит, заряженный конденсатор содержит запас энергии.

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Процесс зарядки конденсатора можно представить как последовательный перенос достаточно малых порций заряда Δq > 0 с одной обкладки на другую.

При этом одна обкладка постепенно заряжается положительным зарядом, а другая – отрицательным.

Поскольку каждая порция переносится в условиях, когда на обкладках уже имеется некоторый заряд q, а между ними существует некоторая разность потенциалов

при переносе каждой порции Δq внешние силы должны совершить работу

Энергия We конденсатора емкости C, заряженного зарядом q, может быть найдена путем интегрирования этого выражения в пределах от 0 до q:

Формулу, выражающую энергию заряженного конденсатора, можно переписать в другой эквивалентной форме, если воспользоваться соотношением qCU.

Электрическую энергию We следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе.

По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля.

Источник: http://infofiz.ru/index.php/mirfiziki/lkf/136-lk31ft

Диэлектрики. Диэлектрики в электрическом поле. Поляризация диэлектриков

В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Οʜᴎ состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всœему объёму диэлектрика.

При внесении диэлектрика во внешнее электрическое полена поверхности диэлектрического образца появляются избыточные связанные заряды. Связанные заряды создают электрическое поле, ĸᴏᴛᴏᴩᴏᴇ внутри диэлектрика направлено противоположно вектору напряженностивнешнего поля. Этот процесс принято называть поляризацией диэлектрика. В результате полное электрическое поле в диэлектрике:

;, (10.2)

где- диэлектрическая проницаемость вещества, показывает, во сколько раз ослабляется электрическое поле внутри диэлектрика за счёт его поляризации.

Существует несколько механизмов поляризации диэлектриков. Основными из них являются ориентационная и электронная поляризации.

Ориентационная поляризация возникает в случае полярных диэлектриков, состоящих из молекул, у которых центры распределœения положительных и отрицательных зарядов не совпадают.

Такие молекулы представляют из себямикроскопические электрические диполи – нейтральную совокупность двух зарядов, равных по модулю и противоположных по знаку, расположенных на некотором расстоянии друг от друга.

Диполями являются, к примеру, молекула воды, а также молекулы ряда других диэлектриков (H2S, NO2 и т. д.).

При отсутствии внешнего электрического поля оси молекулярных диполей из-за теплового движения ориентированы хаотично, так что на поверхности диэлектрика и в любом элементе объёма электрический заряд в среднем равен нулю.

Рис. 10.2. Поляризация полярного диэлектрика

При внесении диэлектрика во внешнее поле возникает частичная ориентация молекулярных диполей. В результате на поверхности диэлектрика появляются связанные заряды, создающие поле, направленное навстречу внешнему полю(рис. 1.5.2).

Поляризация полярных диэлектриков сильно зависит от температуры, так как тепловое движение молекул препятствует ориентации молекулярных диполей.

Электронная поляризация возникает в случае неполярных диэлектриков, молекулы которых не обладают в отсутствие внешнего поля дипольным моментом.

Под действием электрического поля молекулы неполярных диэлектриков деформируются – положительные заряды смещаются в направлении вектора , а отрицательные – в противоположном направлении. В результате каждая молекула превращается в электрический диполь, ось которого направлена вдоль внешнего поля.

На поверхности диэлектрика появляются связанные заряды, создающие свое поле , направленное навстречу внешнему полю. Так происходит поляризация неполярного диэлектрика (рис. 10.3).

Деформация неполярных молекул под действием внешнего электрического поля не зависит от их теплового движения, в связи с этим поляризация неполярного диэлектрика не зависит от температуры.

Рис. 10.3. Поляризация неполярного диэлектрика

В случае если в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд q, то напряженность поля ,создаваемого этим зарядом в некоторой точке, и потенциал φ в ε раз меньше, чем в вакууме:

.(10.3)

Источник: http://referatwork.ru/category/radio/view/396315_dielektriki_dielektriki_v_elektricheskom_pole_polyarizaciya_dielektrikov

Диэлектрики в электрическом поле Лекция 4

Диэлектрики в электрическом поле Лекция

• Все известные в природе вещества, в соответствии с их способностью проводить электрический ток, делятся на три основных класса : диэлектрики , полупроводники и проводники. • Если удельное сопротивление у проводников равно, • то и диэлектриков • а полупроводники занимают промежуточную область

• Термин “диэлектрики” был введен Фарадеем. • Диэлектриком является любая среда (газ, жидкость или твердое тело), в которой длительное время может существовать электрическое поле. • В отличие от проводников в диэлектриках отсутствуют свободные электрические заряды. • Т. е. диэлектриками называют тела в которых заряды не могут перемещаться из одной части в другую

Типы диэлектриков • Атомы и молекулы диэлектрика содержат равные количества положительных и отрицательных микроскопических зарядов и в целом электрически нейтральны. • В зависимости от строения все диэлектрические вещества можно разделить на три большие группы.

Типы диэлектриков • К первой группе принадлежат диэлектрики, состоящие из молекул, у которых “центры тяжести” положительных и отрицательных зарядов совпадают (например, бензол, парафин и др). • Молекулы таких диэлектриков в отсутствие внешнего электрического поля не обладают дипольным моментом.

Типы диэлектриков • Во внешнем электрическом поле “центы тяжести” положительных и отрицательных (электронных оболочек) зарядов молекулы смещаются в противоположные стороны на некоторое расстояние L, малое по сравнению с размерами молекулы. • Каждая молекула при этом становится полярной (дипольной), подобной электрическому диполю и приобретает дипольный электрический момент • Такого рода поляризация называется электронной.

Типы диэлектриков • При помещении диэлектрика в электрическое поле все неполярные молекулы превращаются в дипольные, расположенные цепочками вдоль силовых линий поля. • В результате торцы диэлектрика приобретают разноименные заряды — диэлектрик поляризуется. • Степень электронной поляризации зависит от его свойств и от величины напряженности поля.

Типы диэлектриков • Вторую группу диэлектриков составляют такие вещества, как вода, нитробензол и др. • В таких веществах молекулы всегда (и в отсутствие внешнего поля) несимметричны, т. е. являются дипольными. • Благодаря тепловому движению дипольные молекулы расположены в диэлектрике беспорядочно (рис а). • Поэтому диэлектрик в целом оказывается не поляризованным.

Типы диэлектриков • Под влиянием электрического поля все дипольные молекулы диэлектрика повернутся так, что их оси расположатся приблизительно вдоль силовых линий поля (рис. 14. 3 б). • Такого рода поляризация называется ориентационной или дипольной поляризацией. • Полной ориентации препятствует тепловое движение.

Типы диэлектриков • Если поместить диэлектрик во внешнее электрическое поле, то на молекулу-диполь будет действовать момент сил (рис. 2. 2), стремящийся ориентировать ее дипольный момент в направлении напряженности поля. Однако полной ориентации не происходит, поскольку тепловое движение стремится разрушить действие внешнего электрического поля.

Типы диэлектриков • К третьей группе относятся кристаллические диэлектрики, имеющие ионное строение (хлористый натрий, хлористый калий и др). • У кристаллических диэлектриков с ионной решеткой каждая пара соседних разноименных ионов подобна диполю (рис. 14. 4. а)

Типы диэлектриков • В электрическом поле эти диполи деформируются: удлиняются, если их оси направлены по полю, и укорачиваются, если оси направлены против поля. • В результате диэлектрик поляризуется.

Поляризация • Введем величину, характеризующую степень поляризации диэлектрика. Если просуммировать все дипольные моменты диэлектрика в единице объема, то получим вектор поляризации

Поляризация • Для определения степени поляризации в точке необходимо ΔV устремить к нулю. • Вектор направлен вдоль электрического поля , в котором находится диэлектрик.

Читайте также:  Трансформатор осм - назначение, устройство, характеристики

• Для не слишком сильных полей можно принять, что величина вектора поляризации пропорциональна величине напряженности поля, т. е. Р~Е.

• В системе СИ: • где (хи) — называется диэлектрической восприимчивостью вещества и зависит от его строения.

Поляризация • Смещение электрических зарядов вещества под действием электрического поля называется поляризацией. • Способность к поляризации является основным свойством диэлектриков. • Главное в поляризации – смещение зарядов в электростатическом поле.

Поляризация • В результате, каждая молекула или атом образует электрический момент p (рис. ) • :

Поляризация • Внутри диэлектрика электрические заряды диполей компенсируют друга. • Но на внешних поверхностях диэлектрика, прилегающих к электродам, появляются заряды противоположного знака (поверхностно связанные заряды).

Поляризация • Обозначим — — электростатическое поле связанных зарядов. Оно направлено всегда против внешнего поля. • Следовательно, — результирующее электростатическое поле внутри диэлектрика • (1) • Электростатическое поле внутри диэлектрика всегда меньше внешнего поля.

Поляризация • В результате поляризации на гранях диэлектрика, обращенных к пластинам конденсатора, концы молекулярных диполей окажутся нескомпенсированными соседними диполями.

• Поэтому на правой грани, обращенной к отрицательной пластине конденсатора, окажется избыток положительного заряда с некоторой поверхностной плотностью .

• На противоположной стороне диэлектрика Эти так называемые поляризационные, или связанные заряды не могут быть переданы соприкосновением другому телу без разрушения молекул диэлектрика, т. к. они обусловлены самими поляризованными молекулами.

Поляризация • Для определения применим формулу вычисления напряженности конденсатора • (2) • Свяжем с вектором поляризации Р. • Для этого определим полный дипольный момент (во всем объеме) диэлектрика. • Осуществим это двумя способами:

Поляризация • Осуществим это двумя способами: • С одной стороны Р по определению дипольный момент единицы объема и если умножим на V, получим полный дипольный момент • (3) • где S — площадь пластины конденсатора.

Поляризация • С другой стороны рассмотрим диэлектрик как большой диполь, у которого с одной стороны заряд , а с другой и расстояние d. Отсюда (4) • Приравнивая (3) и (4), получим • Подставляя в (2), и затем результат в (1), получим

Поляризация • Учитывая, что Величина называется диэлектрической проницаемостью или относительной диэлектрической проницаемостью. Диэлектрическая проницаемость показывает во сколько раз уменьшается напряженность в диэлектрике по сравнению с напряженностью в вакууме.

Поляризация • Диэлектрическая восприимчивость и диэлектрическая проницаемость , • т. е. с ростом температуры диэлектрические свойства ухудшаются. • Относительная диэлектрическая проницаемость воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности).

• Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). • Диэлектрическая постоянная воды в статическом поле достаточно высока — около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим диполем.

• Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч.

Электрическое смещение • Основной прикладной задачей электростатики является расчет электрических полей, создаваемых заряженными телами.

• В частном случае такой расчет можно произвести с помощью закона Кулона и принципа суперпозиции электрического поля. • Но в ряде случаев эта задача сильно усложняется.

Например: 1) большое число точечных зарядов, создающих электростатическое поле или распределенный заряд на теле сложной формы; • 2) электрическое поле создается в среде с неоднородным диэлектриком.

Электрическое смещение • Во втором случае вектор напряженности электрического поля зависит от диэлектрической проницаемости среды ε, в которой создано поле • где – напряженность электрического поля в вакууме; • ε — относительная диэлектрическая проницаемость среды. •

Электрическое смещение • В связи с этим при переходе через границу раздела сред напряженность электрического поля и характеризующая его густота силовых линий будут скачкообразно меняться (рис. 2. 1). • Картина будет еще сложнее в случае неоднородного электрического поля и диэлектрика произвольной формы.

Электрическое смещение • Для облегчения расчета электрических полей в неоднородных диэлектриках вводится понятие вектора электрического смещения или вектора электрической индукции • = ε • Направление вектора электрического смещения • совпадает с направлением вектора напряженности . Согласно определению вектора электрического смещения •

Электрическое смещение • Вектор электрического смещения не зависит от среды, в которой создается электрическое поле, и определяется только зарядами, создающими это поле. • Графически такое поле представлено на рис. 2. 2. • Как видно из рисунка, силовые линии вектора электрического смещения непрерывны на границе раздела диэлектрика.

Электрическое смещение • Линии могут начинаться и заканчиваться на любых зарядах – свободных и связанных, линии — только на свободных зарядах. •

Поток вектора электрического смещения Теорема Гаусса для вектора электрического смещения • Аналогично потоку для — • Можно ввести понятие для вектора — Пусть произвольную площадку S пересекают линиивектора электрического смещения под углом α к нормали •

Поток вектора электрического смещения Теорема Гаусса для вектора электрического смещения • Поток вектора электрического смещения • В однородном электростатическом поле

Поток вектора электрического смещения Теорема Гаусса для вектора электрического смещения • Теорему Гаусса для вектора электрического смещения получим из теоремы Гаусса для вектора. • Так как , • то •

Теорема Гаусса для вектора электрического смещения • Поток вектора через любую замкнутую поверхность определяется только свободными зарядами, а не всеми зарядами внутри объема, ограниченного данной поверхностью. • Это позволяет не рассматривать связанные (поляризованные) заряды, влияющие на и упрощает решение многих задач. • В этом смысл введения вектора . •

Теорема Гаусса для вектора электрического смещения • Если обозначить объемную плотность свободных зарядов ρ, а связанных зарядов ρ΄, то присутствие связанных зарядов отразится в теореме Гаусса следующим образом: • — в дифференциальной форме либо в интегральной форме или div D = ρ

Сегнетоэлектрики • В 1920 г. была открыта спонтанная (самопроизвольная) поляризация. • Сначала её обнаружили у кристаллов сегнетовой соли(Na. KC 4 H 4 O 6 · 4 H 2 O), а затем и у других кристаллов.

• Всю эту группу веществ назвали сегнетоэлектрики (или ферроэлектрики ). • Детальное исследование диэлектрических свойств этих веществ было проведено в 1930 – 1934 гг. И. В.

Курчатовым в ленинградском физическом техникуме.

Сегнетоэлектрики • Все сегнетоэлектрики обнаруживают резкую анизотропию свойств (сегнетоэлектрические свойства могут наблюдаться только вдоль одной из осей кристалла). • У изотропных диэлектриков поляризация всех молекул одинакова, у анизотропных – поляризация, и следовательно, вектор поляризации в разных направлениях разные. • В настоящее время известно несколько сотен сегнетоэлектриков.

Сегнетоэлектрики • Рассмотрим основные свойства сегнетоэлектриков : • 1. Диэлектрическая проницаемость ε в некотором температурном интервале велика( ). • 2.

Значение ε зависит не только от внешнего поля E 0 , но и от предыстории образца. • 3.

Диэлектрическая проницаемость ε (а следовательно, и Р ) – нелинейно зависит от напряженности внешнего электростатического поля ( нелинейные диэлектрики ).

Сегнетоэлектрики • Это свойство называется диэлектрическим гистерезисом. • На рисунке изображена кривая поляризации сегнетоэлектрика – петля гистерезиса.

Сегнетоэлектрики Здесь точка а – состояние насыщения. При это говорит о том, что в кристаллах имеется остаточная поляризованность P С , чтобы ее уничтожить, необходимо приложить E С – коэрцитивную силу противоположного направления.

Сегнетоэлектрики 4. Наличие точки Кюри – температуры, при которой (и выше) сегнетоэлектрические свойства пропадают. При этой температуре происходит фазовый переход 2 -го рода.

(Например, титанат бария: 133º С; сегнетова соль: – 18 + 24º С; дигидрофосфат калия: – 150º С; ниобат лития 1210º С).

Причиной сегнетоэлектрических свойств является самопроизвольная (спонтанная) поляризация, возникающая под действием особо сильного взаимодействия между частицами, образующими вещество.

Сегнетоэлектрики • Стремление к минимальной потенциальной энергии и наличие дефектов структуры приводит к тому, что сегнетоэлектрик разбит на домены . • Без внешнего поля P – электрический импульс кристалла равен нулю (рис. а). • Во внешнем электростатическом поле домены ориентируются вдоль поля (рис. б).

Сегнетоэлектрики • Сегнетоэлектрики используются для изготовления многих радиотехнических приборов, например, варикондов – конденсаторов с изменяемой емкостью. • Среди диэлектриков есть вещества, называемые электреты – это диэлектрики, длительно сохраняющие поляризованное состояние после снятия внешнего электростатического поля.

Сегнетоэлектрики • Электреты являются формальными аналогами постоянных магнитов, создающих вокруг себя магнитное поле. Принципиальная возможность получения таких материалов была предсказана Фарадеем.

• Термин «электрет» был предложен Хевисайдом в 1896 году по аналогии с английским «magnet» – постоянный магнит, а первые электреты получены японским исследователем Егучи в 1922 году. Егучи охладил в сильном электрическом поле расплав карнаубского воска и канифоли.

Электрическое поле сориентировало полярные молекулы, и после охлаждения материал остался в поляризованном состоянии. Для уточнения технологии такие материалы называют термоэлектретами.

Пьезоэлектрики • Некоторые диэлектрики поляризуются не только под действием электростатического поля, но и под действием механической деформации. Это явление называется пьезоэлектрическим эффектом.

• Явление открыто братьями Пьером и Жаком Кюри в 1880 году. • Если на грани кристалла наложить металлические электроды (обкладки), то при деформации кристалла с помощью силы на обкладках возникнет разность потенциалов.

Если замкнуть обкладки, то потечет ток.

Пьезоэлектрики • Продемонстрировать пьезоэффект можно рисунком 4. 8. • Сейчас известно более 1800 пьезокристаллов. • Все сегнетоэлектрики обладают пьезоэлектрическими свойствами.

Сегнетоэлектрики • Возможен и обратный пьезоэлектрический эффект. Возникновение поляризации сопровождается механическими деформациями. • Если на пьезоэлектрический кристалл подать напряжение, то возникнут механические деформации кристалла, причем, деформации будут пропорциональны приложенному электростатическому полю Е 0.

Пироэлектрики • Кроме сегнетоэлектриков, спонтанно поляризованными диэлектриками являются пироэлектрики (от греч. pyr – огонь).

• Пироэлектрики – это кристаллические диэлектрики, обладающие спонтанной электрической поляризацией во всей температурной области, вплоть до температуры плавления.

• В отличие от сегнетоэлектриков в пироэлектриках поляризация Р линейно зависит от величины внешнего электрического поля, т. е. пироэлектрики являются линейными диэлектриками.

Пироэлектрики • Пироэлектричество – появление электрических зарядов на поверхности некоторых кристаллов при их нагревании или охлаждении. • При нагревании один конец диэлектрика заряжается положительно, а при охлаждении он же – отрицательно. Появление зарядов связано с изменением существующей поляризации при изменении температуры кристаллов. Типичный пироэлектрик – турмалин

Пироэлектрики • Все пироэлектрики являются пьезоэлектриками, но не наоборот. • Некоторые пироэлектрики обладают сегнетоэлектрическими свойствами. • Из сказанного следует, что понятие «пироэлектрик» является более общим, чем «сегнетоэлектрик» . • Можно сказать, что сегнетоэлектрики есть пироэлектрики с реориентируемой внешним полем поляризацией.

Применение диэлектриков • В пироэлектриках поляризация Р линейно зависит от величины внешнего электростатического поля , т. е. пироэлектрики являются линейными диэлектриками.

• В качестве примеров использования различных диэлектриков можно привести следующие: • сегнетоэлектрики – электрические конденсаторы, ограничители предельно допустимого тока, позисторы, запоминающие устройства; • пьезоэлектрики – генераторы ВЧ и пошаговые моторы, микрофоны, наушники, датчики давления, частотные фильтры, пьезоэлектрические адаптеры; • пироэлектрики – позисторы, детекторы ИК-излучения, болометры (датчики инфракрасного излучения), электрооптические модуляторы.

Источник: http://present5.com/dielektriki-v-elektricheskom-pole-lekciya-4/

Ссылка на основную публикацию