Реактивное сопротивление в электротехнике

Полное сопротивление цепи переменного тока — Основы электроники

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным, а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида — индуктивные и емкостные.

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Введем понятие полного сопротивления цепи переменному току — Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми.

Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б).

Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью.        а) — схема цепи; б) — сдвиг фаз тока и напряжения; в) — треугольник напряжений; д) — треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z2) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

                                      (1)

Извлекая квадратный корень из обеих частей этого равенства, получим,

                                       (2)

 Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е.

полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе.

Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°.

К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи.

Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью.                                                а) — схема цепи; б) — треугольник сопротивлений.

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Для данного случая:

(3)

 В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) — схема цепи; б) — треугольник сопротивлений.

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

                           (4)

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (XL или XC преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

                                     (5)

Или

                         (6)

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C.

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

                       (7)

Приводя к общему знаменателю подкоренное выражение, получим:

  (8)

 откуда:

                              (9)

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

                             (10)

 Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков.

Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

Рисунок 6. Эквивалентная схема колебательного контура.

Формула полного сопротивления для этого случая будет:

                   (11)

 Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

 (12)

 В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

                                     (13)

 При соблюдении этого условия полное сопротивление колебательного контура будет равно:

                                     (14)

 где L—индуктивность катушки в Гн;

С—емкость конденсатора в Ф;

R—активное сопротивление катушки в Ом.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник: http://www.sxemotehnika.ru/polnoe-soprotivlenie-tcepi-peremennogo-toka.html

Электрическое сопротивление. Определение, единицы измерения, удельное, полное, активное, реактивное

Электрическое сопротивление — электротехническая величина, которая характеризует свойство материала препятствовать протеканию электрического тока.

В зависимости от вида материала, сопротивление может стремиться к нулю — быть минимальным (мили/микро омы — проводники, металлы), или быть очень большим (гига омы — изоляция, диэлектрики).

Величина обратная электрическому сопротивлению — это проводимость.

Единица измерения электрического сопротивления — Ом. Обозначается буквой R. Зависимость сопротивления от тока и напряжения в замкнутой цепи определяется законом Ома.

<\p>

Существует большое разнообразие омметров по конструктиву разных производителей, от электромеханических до микроэлектронных.

Стоит отметить, что классический омметр измеряет активную часть сопротивления (так называемые омики).

Любое сопротивление (металл или полупроводник) в цепи переменного токаимеет активную и реактивную составляющую. Сумма активного и реактивного сопротивления составляют полное сопротивление цепи переменного тока и вычисляется по формуле:

где, Z — полное сопротивление цепи переменного тока;

R — активное сопротивление цепи переменного тока;

Xc — емкостное реактивное сопротивление цепи переменного тока;

( С- емкость, w — угловая скорость переменного тока)

Xl — индуктивное реактивное сопротивление цепи переменного тока;

( L- индуктивность, w — угловая скорость переменного тока).

Активное сопротивление— это часть полного сопротивления электрической цепи, энергия которого полностью преобразуется в другие виды энергии (механическую, химическую, тепловую).

Отличительным свойством активной составляющей — полное потребление всей электроэнергии (в сеть обратно в сеть энергия не возвращается), а реактивное сопротивление возвращает часть энергии обратно в сеть (отрицательное свойство реактивной составляющей).

Физический смысл активного сопротивления

Каждая среда, где проходят электрические заряды, создаёт на их пути препятствия (считается, что это узлы кристаллической решётки), в которые они как-бы ударяются и теряют свою энергию, которая выделяется в виде тепла.

Численную величину, характеризующую способность материала препятствовать прохождению зарядов и называют сопротивлением. Измеряется оно в Омах (Ом) и является обратно пропорциональной электропроводности величиной.

Разные элементы периодической системы Менделеева имеют различные удельные электрические сопротивления (р), например, наименьшим уд.

сопротивлением обладают серебро (0,016 Ом*мм2/м), медь (0,0175 Ом*мм2/м), золото (0,023) и алюминий (0,029).

Именно они применяются в промышленности в качестве основных материалов, на которых строится вся электротехника и энергетика. Диэлектрики, напротив, обладают высоким уд. сопротивлением и используются для изоляции.

Читайте также:  Rgb контроллеры для светодиодной ленты

Сопротивление проводящей среды может значительно изменяться в зависимости от сечения, температуры, величины и частоты тока. К тому же, разные среды обладают различными носителями зарядов (свободные электроны в металлах, ионы в электролитах, «дырки» в полупроводниках), которые являются определяющими факторами сопротивления.

Физический смысл реактивного сопротивления

В катушках и конденсаторах при подаче напряжения происходит накопление энергии в виде магнитных и электрических полей, что требует некоторого времени.

Кроме того, возникает устойчивый сдвиг фаз напряжения и силы тока, а это приводит к дополнительным потерям электроэнергии.

Удельное сопротивление

Как узнать сопротивление материала, если по нему не течет ток и у нас нет омметра? Для это существует специальная величина —удельное электрическое сопротивление материалов

(это табличные значения, которые определены опытным путем для большинства металлов). С помощью этого значения и физических величин материала, мы можем вычислить сопротивление по формуле:

где,p— удельное сопротивление (единицы измерения ом*м/мм2);

l — длина проводника (м);

S — поперечное сечение (мм2).

Источник: http://pue8.ru/elektrotekhnik/413-elektricheskoe-soprotivlenie.html

Реактивное сопротивление: формирование электросопротивления

В электротехнике активным и реактивным сопротивлением принято называть величину, характеризующую силу противодействия участка электрической цепи направленному (упорядоченному) движению частиц или квазичастиц — носителям электрического заряда. Это противодействие формируется методом преобразования электроэнергии в иные формы энергии. В случае необратимого изменения электрической энергии звена цепи в иные виды энергии, противодействие будет активным.

Сеть с переменным током обладает необратимой трансформацией и передачей энергии элементам электрической цепи. Осуществляя обменный процесс электроэнергии с компонентами цепи и источником питания, сопротивление будет реактивным.

Если в качестве примера рассматривать микроволновую печь, электрическая энергия в ней необратимо конвертируется в тепловую, в результате чего микроволновая печь получает активное противодействие, равно как элементы, трансформирующие электрическую энергию в световую, механическую и т. д.

Активное сопротивление находится в прямой зависимости от количества полных циклов изменения электродвижущей силы (ЭДС), произошедших за одну секунду. Чем больше это количество, тем выше активное сопротивление.

Однако немало потребителей имеют индуктивные и емкостные свойства в момент прохождения сквозь них переменного тока. К ним можно отнести:

  • конденсаторы;
  • дроссели;
  • электромагниты;
  • трансформаторы.

Следует учитывать как активное, так и реактивное сопротивление, которое обусловлено присутствием в электропотребителе емкостного и индуктивного признака. Прерывая и замыкая цепь постоянного тока, проходящего по любой из обмоток, параллельно с преобразованием тока произойдет и изменение магнитного потока внутри самой обмотки, в итоге в ней появляется электродвижущая сила самоиндукции.

Аналогичная ситуация будет проявляться и в обмотке, подключенной к цепи с переменным током, с тем лишь отличием, что в этом случае ток беспрерывно меняется как по параметру, так и в направлении. Отсюда следует, что беспрерывно будет меняться параметр магнитного потока, проникающего в обмотку, в которой индуктируется электродвижущая сила самоиндукции.

Получается, что ЭДС, появляющаяся внутри проводника (обмотки), задействованного в цепи переменного тока, постоянно будет противодействовать току, препятствуя его изменению. Другими словами, ЭДС можно расценивать как вспомогательное сопротивление, которое совместно с активным сопротивлением катушки создает синергический эффект противодействия идущему через катушку переменному току.

Электротехнический закон реактанса

Формирование реактивного сопротивления происходит с помощью спада реактивной мощности, израсходованной на создание электромагнитного поля в электрической цепи. Спад реактивной мощности образуется способом подсоединения к преобразователю аппарата с активным сопротивлением.

Двухполюснику, подключенному к цепи, получается аккумулировать только лимитированную долю заряда до изменения полярности напряжения на диаметрально противоположную. Благодаря этому электроток не опускается до нулевой отметки, как в цепях постоянного тока. Накопление заряда конденсатором напрямую зависит от частоты электротока.

Формулой реактивного сопротивления определяется мнимая часть импеданса:

Z = R+jX, где Z — комплексное электросопротивление, R — активное электросопротивление, X — реактивное электросопротивление, j — мнимая единица.

Электрический импеданс

Полное сопротивление цепи переменного тока или импеданс есть отражение трансформирующейся во времени величины тока. В электротехнической литературе обозначается латинской буквой Z.

Импеданс является двумерной (векторной) величиной, включающей в себя две независимые скалярные одномерные характеристики: активное и реактивное противодействие переменному электротоку.

Проще говоря, полное сопротивление — это активное и реактивное в сумме.

Активный компонент импеданса, обозначаемый буквой R, является критерием уровня, с которым материал противодействует потоку отрицательно заряженных частиц среди своих атомов. Низкоомными материалами принято считать:

Высокоомные материалы называют диэлектриками или изоляторами. К перечню таких материалов можно отнести:

  • полиэтилен;
  • слюду;
  • оргстекло.

Вещества с промежуточной степенью противодействия относят к группе полупроводников. В эту группу входят:

  • окисды металлов;
  • сернистые соединения;
  • соединения с селеном;
  • химические элементы (мышьяк, германий, фосфор, кремний, сера, теллур, углерод, гален и др.).

Полное сопротивление вычисляется по формуле: Z = √ R2 +(XL — XC)2, где: R — активное электросопротивление; XL — индуктивное сопротивление, единица измерения Ом; XC — емкостное противодействие, единица измерения Ом.

Полное противодействие рассчитывается пошагово.

Вначале рисуют схему, потом вычисляют равнозначные противодействия индивидуально для активного, индуктивного и емкостного компонентов нагрузки и вычисляется полное противодействие электрической цепи.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/moschnost/soprotivlenie/svoystva-aktivnogo-i-reaktivnogo-soprotivleniya.html

Активное и реактивное сопротивление. Треугольник сопротивлений

Активное и реактивное сопротивление — сопротивлением в электротехнике называется величина, которая характеризует противодействие части цепи электрическому току. Это сопротивление образовано путем изменения электрической энергии в другие типы энергии. В сетях переменного тока имеется необратимое изменение энергии и передача энергии между участниками электрической цепи.

При необратимом изменении электроэнергии компонента цепи в другие типы энергии, сопротивление элемента является активным. При осуществлении обменного процесса электроэнергией между компонентом цепи и источником, то сопротивление реактивное.

В электрической плите электроэнергия необратимо преобразуется в тепло, вследствие этого электроплита имеет активное сопротивление, так же как и элементы, преобразующие электричество в свет, механическое движение и т.д.

В индуктивной обмотке переменный ток образует магнитное поле. Под воздействием переменного тока в обмотке образуется ЭДС самоиндукции, которая направлена навстречу току при его увеличении, и по ходу тока при его уменьшении. Поэтому, ЭДС оказывает противоположное действие изменению тока, создавая индуктивное сопротивление катушки.

С помощью ЭДС самоиндукции осуществляется возвращение энергии магнитного поля обмотки в электрическую цепь. В итоге обмотка индуктивности и источник питания производят обмен энергией. Это можно сравнить с маятником, который при колебаниях преобразует потенциальную и кинетическую энергию. Отсюда следует, что сопротивление индуктивной катушки имеет реактивное сопротивление.

Самоиндукция не образуется в цепи постоянного тока, и индуктивное сопротивление отсутствует. В цепи емкости и источника переменного тока изменяется заряд, значит между емкостью и источником тока протекает переменный ток. При полном заряде конденсатора его энергия наибольшая.

В цепи напряжение емкости создает противодействие течению тока своим сопротивлением, и называется реактивным. Между конденсатором и источником происходит обмен энергией.

После полной зарядки емкости постоянным током напряжение его поля выравнивает напряжение источника, поэтому ток равен нулю

Конденсатор и катушка в цепи переменного тока работают некоторое время в качестве потребителя энергии, когда накапливают заряд. И также работают в качестве генератора при возвращении энергии обратно в цепь.

Если сказать простыми словами, то активное и реактивное сопротивление – это противодействие току снижения напряжения на элементе схемы. Величина снижения напряжения на активном сопротивлении имеет всегда встречное направление, а на реактивной составляющей – попутно току или навстречу, создавая сопротивление изменению тока.

Настоящие элементы цепи на практике имеют все три вида сопротивления сразу. Но иногда можно пренебречь некоторыми из них ввиду незначительных величин. Например, емкость имеет только емкостное сопротивление (при пренебрежении потерь энергии), лампы освещения имеют только активное (омическое) сопротивление, а обмотки трансформатора и электромотора – индуктивное и активное.

Активное сопротивление

В цепи действия напряжения и тока, создает противодействие, снижения напряжения на активном сопротивлении. Падение напряжения, созданное током и оказывающее противодействие ему, равно активному сопротивлению.

При протекании тока по компонентам с активным сопротивлением, снижение мощности становится необратимым. Можно рассмотреть резистор, на котором выделяется тепло. Выделенное тепло не превращается обратно в электроэнергию. Активное сопротивление, также может иметь линия передачи электроэнергии, соединительные кабели, проводники, катушки трансформаторов, обмотки электромотора и т.д.

Отличительным признаком элементов цепи, которые обладают только активной составляющей сопротивления, является совпадение напряжения и тока по фазе. Это сопротивление вычисляется по формуле:

R = U/I, где R – сопротивление элемента, U – напряжение на нем, I – сила тока, протекающего через элемент цепи.

На активное сопротивление влияют свойства и параметры проводника: температура, поперечное сечение, материал, длина.

Реактивное сопротивление

Тип сопротивления, определяющий соотношение напряжения и тока на емкостной и индуктивной нагрузке, не обусловленное количеством израсходованной электроэнергии, называется реактивным сопротивлением.

Оно имеет место только при переменном токе, и может иметь отрицательное и положительное значение, в зависимости от направления сдвига фаз тока и напряжения.

При отставании тока от напряжения величина реактивной составляющей сопротивления имеет положительное значение, а если отстает напряжение от тока, то реактивное сопротивление имеет знак минус.

Активное и реактивное сопротивление, свойства и разновидности

Рассмотрим два вида этого сопротивления: емкостное и индуктивное. Для трансформаторов, соленоидов, обмоток генераторов и моторов характерно индуктивное сопротивление. Емкостный вид сопротивления имеют конденсаторы. Чтобы определить соотношение напряжения и тока, нужно знать значение обоих видов сопротивления, которое оказывает проводник.

Реактивное сопротивление образуется при помощи снижения реактивной мощности, затраченной на образование магнитного поля в цепи. Снижение реактивной мощности создается путем подключения к трансформатору прибора с активным сопротивлением.

Конденсатор, подключенный в цепь, успевает накопить только ограниченную часть заряда перед изменением полярности напряжения на противоположный. Поэтому ток не снижается до нуля, так как при постоянном токе. Чем ниже частота тока, тем меньше заряда накопит конденсатор, и будет меньше создавать противодействие току, что образует реактивное сопротивление.

Иногда цепь имеет реактивные компоненты, но в результате реактивная составляющая равна нулю. Это подразумевает равенство фазного напряжения и тока. В случае отличия от нуля реактивного сопротивления, между током и напряжением образуется разность фаз.

Катушка имеет индуктивное сопротивлением в схеме цепи переменного тока. В идеальном виде ее активное сопротивление не учитывают. Индуктивное сопротивление образуется с помощью ЭДС самоиндукции. При повышении частоты тока возрастает и индуктивное сопротивление.

На индуктивное сопротивление катушки оказывает влияние индуктивность обмотки и частота в сети.

Конденсатор образует реактивное сопротивление из-за наличия емкости. При возрастании частоты в сети его емкостное противодействие (сопротивление) снижается. Это дает возможность активно его применять в электронной промышленности в виде шунта с изменяемой величиной.

Треугольник сопротивлений

Схема цепи, подключенной к переменному току, имеет полное сопротивление, которое можно определить в виде суммы квадратов реактивного и активного сопротивлений.

Если изобразить это выражение в виде графика, то получится треугольник сопротивлений. Он образуется, если рассчитать последовательную цепь всех трех видов сопротивлений.

Читайте также:  Энергетика, электрические системы - основные понятия

По этому треугольному графику можно увидеть, что катеты представляют собой активное и реактивное сопротивление, а гипотенуза является полным сопротивлением.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/aktivnoe-i-reaktivnoe-soprotivlenie/

Реактивное сопротивление

Итак, катушки индуктивности и конденсаторы препятствуют протеканию переменного тока. Такое сопротивление по переменному току носит название реактивного сопротивления Х и измеряется в омах. Реактивное сопротивление зависит как от величины индуктивности и емкости, так и от частоты сигнала.

Катушка индуктивности имеет индуктивное реактивное сопротивление VL равное

где f — частота в герцах, a L — индуктивность в генри.
Так как ω = 2πf, то можно записать XL = ωL. Например, реактивное сопротивление катушки с индуктивностью 10 мГн, на которую подается сигнал частотой 1 кГц, равно

XL = 2π*1*103*10 *10-3 = 62,8 Ом.

Реактивное сопротивление катушки индуктивности возрастает с увеличением частоты сигнала (рис. 4.26).
Конденсатор имеет емкостное сопротивление XC равное

где С — емкость в фарадах. Например, реактивное сопротивление конденсатора емкостью 1 мкФ, на который подается сигнал частотой 10 кГц, равно

Рис. 4.26. Зависимость индуктивного                                            Рис. 4.27.
сопротивления от частоты.

Рис. 4.28. Векторная сумма емкостного (XC)

и индуктивного (XL) сопротивлений.

                                                                                                                                         Рис. 4.29.
(а) Катушка индуктивности, соединенная последовательно с резистором R.
(б) Векторное представление R, XL и их векторной суммы Z

Реактивное сопротивление конденсатора уменьшается с увеличением частоты сигнала (рис. 4.27).
Результирующее сопротивление цепи, включающей в себя емкостное сопротивление XC и индуктивное сопротивление XL, равно векторной сумме XC и XL. Векторы XC и XL, как видно из рис. 4.

28(б), находятся в противофазе, т. е. разность фаз между ними равна 1800. Поэтому результирующее сопротивление просто равно разности между XC и XL. Например, пусть XL = 100 Ом, а XC = 70 Ом.

Тогда результирующее реактивное сопротивление Х = 100 – 70 = 30 Ом и является индуктивным так как XL больше, чем XС.

Импеданс
Результирующее сопротивление цепи, содержащей как активное, так и реактивное (индуктивное либо емкостное) сопротивление, носит название импеданса или полного сопротивления цепи.

Импеданс Z является векторной суммой реактивного сопротивления Х и активного сопротивления R.
Рассмотрим, например, схему, изображенную на рис. 4.29. Она включает в себя индуктивное сопротивление XL соединенное последовательно с резистором R. Как видно из рис. 4.

29(б), вектор XL опережает вектор R на 90°. Импеданс равен

Если XL = 400 Ом и R = 300 Ом, то Z = 500 Ом.

Источник: http://radiolubitel.net/index.php/elektronika/263-reaktivnoe-soprotivlenie

Активное и реактивное сопротивление, треугольник сопротивлений

Активное и реактивное сопротивления

Сопротивление, оказываемое проходами и потребителями в цепях неизменного тока, именуется омическим сопротивлением.

Если какой-нибудь проводник включить в цепь переменного тока, то окажется, что его сопротивление будет несколько больше, чем в цепи неизменного тока. Это разъясняется явлением, получившим заглавие скин-эффекта (поверхностный эффект).

Суть его заключается в последующем. При прохождении переменного тока по проводнику снутри него существует переменное магнитное поле, пересекающее проводник. Магнитные силовые полосы этого поля индуктируют в проводнике ЭДС, но она будет не схожей в разных точках сечения проводника: к центру сечения на больше, а к периферии — меньше.

Это разъясняется тем, что точки, лежащие поближе к центру, пересекаются огромным числом силовых линий. Под действием этой ЭДС переменный ток будет распределяться не по всему сечению проводника умеренно, а поближе к его поверхности.

Это равносильно уменьшению полезного сечения проводника, а как следует, повышению его сопротивления переменному току. К примеру, медный провод длиной 1 км и поперечником 4 мм оказывает сопротивление: неизменному току — 1,86 ом, переменному частотой 800 гц — 1,87 ом, переменному току частотой 10000 гц — 2,90 ом.

Сопротивление, оказываемое проводником проходящему на нему переменному току, именуется активным сопротивлением.

Если какой-нибудь потребитель не содержит внутри себя индуктивности и емкости (лампочка накаливания, нагревательный прибор), то он будет являться для переменного тока также активным сопротивлением.

Активное сопротивление находится в зависимости от частоты переменного тока, возрастая с ее повышением.

Но многие потребители владеют индуктивными и емкостными качествами при прохождении через их переменного тока. К таким потребителям относятся трансформаторы, дроссели, электромагниты, конденсаторы, различного рода провода и многие другие.

При прохождении через их переменного тока нужно учесть не только лишь активное, да и реактивное сопротивление, обусловленное наличием, в потребителе индуктивных и емкостных параметров его.

Понятно, что если неизменный ток, проходящий по какой-нибудь обмотке, прерывать и замыкать, то сразу с конфигурацией тока будет изменяться и магнитный поток снутри обмотки, в итоге чего в ней возникнет ЭДС самоиндукции.

То же самое будет наблюдаться и в обмотке, включенной в цепь переменного тока, с той только различием, что тутток безпрерывно меняется как по величине, так и по направлению. Как следует, безпрерывно будет изменяться величина магнитного потока, пронизывающего обмотку, и в ней будет индуктироваться ЭДС самоиндукции.

Но направление ЭДС самоиндукции всегда таково, что противодействует изменению тока. Так, при возрастании тока в обмотке ЭДС самоиндукции будет стремиться задержать нарастание тока, а при убывании тока, напротив, будет стремиться поддержать исчезающий ток.

Отсюда следует, что ЭДС самоиндукции, возникающая в обмотке (проводнике), включенной в цепь переменного тока, будет всегда действовать против тока, задерживая его конфигурации. По другому говоря, ЭДС самоиндукции можно рассматривать как дополнительное сопротивление, оказывающее совместно с активным сопротивлением обмотки противодействие проходящему через обмотку переменному току.

Сопротивление, оказываемое переменному току ЭДС самоиндукции, носит заглавие индуктивного сопротивления.

Индуктивное сопротивление будет тем больше, чем больше индуктивность потребителя (цепи) и выше частота переменного тока. Это сопротивление выражается формулой xl = ωL, где xl — индуктивное сопротивление в омах; L — индуктивность в генри (гн); ω — угловая частота где f — частота тока).

Не считая индуктивного сопротивления существует емкостное сопротивление, обусловливаемое как наличием емкости в проводниках и обмотках, так и включением в отдельных случаях в цепь переменного тока конденсаторов. При увеличении емкости С потребителя (цепи) и угловой частоты тока емкостное сопротивление миниатюризируется.

Емкостное сопротивление равно xс = 1/ωС, где хс — емкостное сопротивление в омах, ω — угловая частота, С — емкость потребителя в фарадах.

Треугольник сопротивлений

Разглядим цепь, активное сопротивление частей которой r, индуктивность L и емкость С.

Рис. 1. Цепь переменного тока с резистором, катушкой индуктивности и конденсатором.

Полное сопротивление таковой цепи z = √r2+ (хl — xc)2) = √r2 + x2)

Графически это выражение можно изобразить в виде, так именуемого, треугольника сопротивлений.

Рис.2. Треугольник сопротивлений

Гипотенуза треугольника сопротивлений изображает полное сопротивление цепи, катеты — активное и реактивное сопротивления.

Если одно из сопротивлений цепи — (активное либо реактивное), к примеру, в 10 и поболее раз меньше другого, то наименьшим можно пренебречь, в чем просто убедиться конкретным расчетом.

Школя для электрика

Источник: http://elektrica.info/aktivnoe-i-reaktivnoe-soprotivlenie-treugol-nik-soprotivlenij/

Переменный электрический ток. Активные и реактивные сопротивления в цепях переменного тока

Переменным называется ток, изменение которого по величине и направлению повторяется периодически через равные промежутки времени Т.

— В электрической цепи переменного тока существует два вида сопротивлений: активноеи реактивное. Это является существенным отличием от цепей постоянного тока.

Активное сопротивление

При прохождении тока через элементы, имеющие активное сопротивление, потери выделяющейся мощности необратимы. Примером может служить резистор, выделяющееся на нем тепло, обратно в электрическую энергию не превращается. Кроме резистора активным сопротивлением может обладать линии электропередач, соединительные провода, обмотки трансформатора или электродвигателя.

Отличительной чертой элементов имеющих чисто активное сопротивление – это совпадение по фазе тока и напряжения, поэтому вычислить его можно по формуле

Активное сопротивление зависит от физических параметров проводника, таких как материал, площадь сечения, длина, температура.

Реактивное сопротивление

При прохождении переменного тока через реактивные элементы возникает реактивноесопротивление. Оно обусловлено в первую очередь ёмкостями и индуктивностями.

— Задача на определение периода и частоты свободных колебаний в колебательном контуре.

— Задача на применение формулы сопротивления параллельно соединенных резисторов.

Смотреть в тетради

— Задача на движение или равновесие частицы в электрическом поле.

— Задача на применение закона Джоуля – Ленца.

— Задача на применение закона Кулона.

— Задача на расчет удельного сопротивления материала проводника.

— Задача на применение закона Ома для полной цепи.

Найти силу тока в цепи, если известно что сопротивление цепи 11 Ом, а источник подключенный к ней имеет ЭДС 12 В и внутреннее сопротивление 1 Ом.

Источник ЭДС подключен к резистору сопротивлением 10 Ом с помощью медного провода длиной 1 м и площадью поперечного сечения 1 мм2. Найти силу тока, зная что ЭДС источника равно 12 В, а внутреннее сопротивление 1,9825 Ом.

— Задача на расчет общего сопротивления последовательно соединенных резисторов.

Задача: проводники сопротивлением 5 и 6 Ом соединены последовательно и включены в сеть напряжением 33 В. Определите силу тока в каждом проводнике.

Дано: R1=5 Ом R2=6 Ом U=33 В I — ? Решение: R=R1+R2 R=5 Ом+6 Ом=11 Ом I=U/R I=33В/11 Ом=3А

Ответ. I=3А.

Задача: проводники сопротивлением 4, 8 и 8 Ом соединены последовательно и включены в сеть напряжением 20 В. Определите силу тока в каждом проводнике.

Дано: R1=4 Ом R2=8 Ом R3=8 Ом U=20 В I — ? Решение: R=4 Ом+8 Ом+8 Ом=20 Ом. I=U/R I=20В/20 Ом=1А.

Ответ. I=1А.

Задача: два проводника сопротивлением 15 и 10 Ом соединены параллельно. Вычислите их общее сопротивление и силу тока в первом проводнике, если во втором она равна 1,5 А.

Дано: R1=15 Ом R2=10 Ом I2=1,5А R — ? I1 — ? Решение: 1/R=1/R1+1/R2 1/R=1/15+1/10=1/6. R=6 Ом. U=I*R U2=1,5А*10 Ом=15В Так как соединение параллельное, то U2=U1=Uобщ.I1=U1/R1. I1=15В/15 Ом=1 А.

Ответ. R=6 Ом; I1=1 А.

— Задача на применение формулы мощности постоянного тока.

Задача: сопротивление электрического паяльника 440 Ом. Он работает при напряжении 220 В. определите мощность, потребляемую паяльником.

Дано: R=440 Ом U=220В P — ? Решение: P=I*U I=U/R I=220В/440 Ом=0,5А. P=0,5А*220В=110В*А=110Вт

Ответ. P=110Вт

Задача: электрическая лампа включена в сеть напряжением 220В. Сила тока, проходящего через лампу, равна 0,45А. Чему равна мощность электрического тока в лампе за 2 с?

Читайте также:  Схема электрических соединений тэц средней мощности
Дано: U=220В I=0,45А t=2с P — ? Решение: P=I*U P=0.45А*220В=99Вт   Примечание: время t — лишние данные задачи, т.к. мощность не зависит от времени.

Ответ. P=99Вт.

Задача: определите сопротивление электрической лампочки, на баллоне которой написано: «100Вт; 220 В».

Дано: P=100Вт U=220В R — ? Решение: P=U*I => I=P/U R=U/I I=100Вт/220В=0,4545 R=220В/0,4545А=484Ом.

Ответ. 484 Ом.

Магнитное поле и ЭМИ

Источник: https://cyberpedia.su/6x1e63.html

Онлайн расчет реактивного сопротивления

Сопротивлением называется свойство материала препятствовать протеканию электрического тока. Оно бывает активным (у резисторов) и реактивным (у конденсаторов и индуктивностей).

Они отличаются тем, что первое преобразует энергию в тепло, а принцип действия реактивной энергии заключается в препятствии протеканию тока в результате передачи энергии электрического (в емкостях) или магнитного поля (в индуктивности) и наблюдается только в цепях переменного тока.

В результате этих взаимодействий происходит отклонение фазы тока от фазы напряжения, пропорциональное величине реактивного сопротивления. При этом в емкостных цепях ток опережает напряжение, а в индуктивных наоборот.

Данное явление используют при питании трёхфазных двигателей от однофазной сети (в т. ч. конденсаторных), а также при питании газоразрядных ламп (дросселя и ЭмПРА).

Эта величина зависит от частоты питающего напряжение, что является следствием законов коммутации и величины ЭДС-самоиндукции на индуктивности.

Поговорим о том, как рассчитать реактивное или емкостное сопротивление конденсатора. Чтобы выполнить расчет вручную воспользуйтесь формулой:

Если её рассмотреть подробнее, то сопротивление обратно пропорционально w и ёмкости C. В свою очередь угловая частота w (измеряется в радианах или градусах в секунду – рад/с) равна произведению 2пf, где f – циклическая частота (раз в секунду или Гц).

Для расчета сопротивления конденсатора с помощью онлайн калькулятора вам нужно:

  1. Выбрать размерности для вводных данных и результатов, это важно, чтобы не допустить ошибки при дальнейшем их использовании.
  2. Ввести известные данные.
  3. Нажать кнопку «вычислить» напротив искомой величины.

При этом наш калькулятор позволяет вычислить онлайн каждую из составляющих формулы в зависимости от того, какие данные введены, а это очень удобно при расчётах электрической схемы или контура.

Также следует рассказать о том, как выполняется расчёт реактивного сопротивления дросселя. Для катушек индуктивности всех видов справедлива такая формула:

Тогда итоговое значение возрастает прямо пропорционально скорости изменения тока и величины индуктивности.

Для использования в расчётах онлайн калькулятора по аналогии с предыдущим нужно:

  1. Выбрать размерности.
  2. Ввести известные данные.

После этого будет произведено вычисление нужного параметра электрической цепи. Надеемся, предоставленный нами онлайн-калькулятор для расчета реактивного сопротивления был для вас полезным!

Источник: https://samelectrik.ru/reaktivnoe-soprotivlenie.html

1. Обзор R, X, и Z

Обзор R, X, и Z

Прежде чем мы начнем исследовать цепи переменного тока, содержащие одновременно резисторы, катушки индуктивности и конденсаторы, давайте кратко рассмотрим некоторые основные термины и факты.

Сопротивление — это воздействие силы трения на электроны при их движении через проводник. Сопротивление в некоторой степени присутствует во всех проводниках (за исключением сверхпроводников).

Особенно оно характерно для резисторов. Когда переменный ток проходит через сопротивление, произведенное им напряжение находится в фазе с этим током.

Сопротивление обозначается буквой «R» и измеряется в Омах (Ом, Ω).

Реактивное сопротивление по существу — это инерция против движения электронов. Реактивное сопротивление существует там, где электрические или магнитные поля развиваются пропорционально приложенному напряжению или току.

Прежде всего оно характерно для конденсаторов и катушек индуктивности. Когда переменный ток проходит через чисто реактивное сопротивление, производимое им напряжение не совпадает по фазе с током на 90o.

Реактивное сопротивление обозначается буквой «X» и измеряется тоже в Омах (Ом, Ω).

Импеданс является всеобъемлющим выражением всех видов сопротивлений потоку электронов (включая активное и реактивное сопротивления).

Импеданс присутствует во всех схемах и во всех компонентах. Когда переменный ток проходит через импеданс, производимое им напряжение не совпадает по фазе с током от 0o до 90o.

Импеданс обозначается буквой «Z» и измеряется так же в Омах (Ом, Ω).

Идеальные резисторы обладают обычным сопротивлением, но у них нет реактивного сопротивления. Идеальные катушки индуктивности и конденсаторы обладают реактивным сопротивлением, но у них нет обычного сопротивления.

Все вышеперечисленные компоненты обладают импедансом. Исходя из этого, имеет смысл перевести все значения активных и реактивных сопротивлений в соответствующие импедансы.

Это будет первым шагом в анализе цепей переменного тока.

Фазовый угол импеданса любого компонента представляет собой сдвиг фазы между напряжением на этом компоненте и током через него.

У идеального резистора напряжение и ток всегда находятся в фазе друг с другом, а значит, угол его импеданса составляет 0o. У идеальной катушки индуктивности напряжение всегда опережает ток на 90o, а значит, угол ее импеданса составляет +90o.

У идеального конденсатора напряжение всегда отстает от тока на 90o, а значит, угол его импеданса составляет -90o.

Импедансы в цепях переменного тока ведут себя аналогично сопротивлениям в цепях постоянного тока: в последовательных цепях их значение увеличивается, а в параллельных — уменьшается. Пересмотренный на основе импеданса Закон Ома выглядит следующим образом:

Законы Кирхгофа, все методы анализа цепей и теоремы, рассмотренные нами в предыдущем разделе, верны и для цепей переменного тока (при условии, что величины представляются в комплексной, а не скалярной форме). Несмотря на то, что эта эквивалентность может быть математически сложной, она концептуально проста и изящна.

Единственное различие между расчетами постоянных и переменных цепей касается мощности. Поскольку реактивное сопротивление не рассеивает мощность (как это делает обычное сопротивление), понятие мощности в цепях переменного тока в корне отличается от понятия мощности в цепях постоянного тока.

Подробнее об этом мы расскажем несколько позже.

Источник: http://www.radiomexanik.spb.ru/5.-reaktivnoe-soprotivlenie-i-impedans-r-l-i-c/1.-obzor-r-x-i-z.html

Reactance

Реактивное сопротивление — это мнимая часть импеданса (импедансом называется полное (комплексное) сопротивление цепи переменного тока), которая показывает меру противодействия синусоидальному переменному току. Реактивное сопротивление возникает в присутствии индуктивности и ёмкости в цепи, и обозначается символом X; единица СИ — Ом.

(В этом разделе знак тильда (~) будет использован для обозначения векторов или комплексных величин, а буквы без дополнительных знаков обозначают модули векторов соответствующих величин, а также скалярные величины.)

Для определения импеданса   требуется как реактивное сопротивление X, так и резистивное (активное) сопротивление R. Несмотря на то, что в некоторых обстоятельствах реактивное сопротивление может доминировать, требуется хотя-бы приблизительное знание активного сопротивления  для определения импеданса. 

Как модуль, так и фаза  импеданса зависят от обоих сопротивлений – и от активного и от реактивного:

Модуль импеданса — это отношение амплитуд напряжения и тока, тогда как фаза — это разница между фазами напряжения и тока. 

  • Если X>0 говорят, что реактивное сопротивление является индуктивным
  • Если X=0 говорят, что импеданс чисто резистивный (активный)
  • Если X и ёмкости C.

    Ёмкостной элемент называется конденсатором. Конденсатор состоит из двух проводников, отделённых друг от друга изолятором, тоесть диэлектриком.

    При низких частотах или в цепи постоянного тока конденсатор разрывает (размыкает) цепь, так как ток не может течь через диэлектрик.

    Если к изначально разряженному конденсатору прикладывают постоянное напряжение – в начальный момент на обкладках конденсатора индуцируются заряды, электрическое поле котрых противоположно полю внешнего источника напряжения.

    Поэтому ток в этот начальный момент в цепи максимален. Затем потенциалы источника питания и конденсатора точно уравниваются, и ток в цепи прекращается.

    Конденсатор, включённый в цепь переменного тока, будет успевать накапливать только ограниченный заряд перед тем, как разность потенциалов изменит знак на противоположный.

    Тоесть ток не будет успевать упасть до нуля, как в случае цепи постоянного тока.

    Чем выше частота, тем меньший заряд будет аккумулироваться в конденсаторе, и тем меньше конденсатор будет противодействовать внешнему току (сопротивление уменьшается).

    Индуктивное реактивное сопротивление

    Индуктивное реактивное сопротивление XL прямопропорционально частоте сигнала и индуктивности L.

    Индуктивный элемент представляет собой катушку индуктивности, тоесть длинный проводник, например проволока, намотанный в виде катушки. Изнутри катушка может быть пустая или содержать магнетик.

    Закон электромагнитной индукции Фарадея устанавливает, что ЭДС электромагнитной индукции в замкнутом контуре численно равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную этим контуром.

    Эта ЭДС часто называется противо-ЭДС.

    Если индуктивность представляет собой катушку содержащую N витков.

    В общем случае ЭДС является следствием изменения магнитного потока в контуре. Но это изменение магнитного потока может иметь разные причины: движение магнита, движение другой катушки с током, изменение собственного тока контура. Последний случай носит название – явление самоиндукции, которое и лежит в основе индуктивного реактивного сопротивления.

    В свою очередь противо-ЭДС вызывает в контуре индукционный ток, который направлен противоположно току источника питания. Точная форма правила Ленца: индукционный ток в контуре имеет такое направление, что созданный им магнитный поток, через контур, препятствует изменению магнитного потока, вызвавшего этот ток.

    Если к изначально неподключенной катушке индуктивности подключают источник постоянного тока – в начальный момент в катушке начинает течь ток от внешнего источника. Он вызывает изменение магнитного потока. Изменение магнитного потока порождает противо-ЭДС. Противо-ЭДС вызывает противоток. Этот противоток в начальный момент равен току источника.

    При низких частотах или в цепи постоянного тока катушка индуктивности проводит электрический ток беспрепятственно, и может рассматриваться как короткозамкнутый участок цепи, тоесть проводник с низким сопротивлением.

    Если к изначально неподключенной катушке индуктивности подключают источник постоянного тока – в начальный момент в катушке возникает противоток, равный току внешнего источника. Поэтому для идуктивного элемента в этот начальный момент результирующий ток равен нулю, а напряжение максимально.

    Затем токи источника и индуктивного элемента уравниваются и напряжение на индуктивном элементе становится равным нулю.

    Ток в катушке индуктивности, включённой в цепь переменного тока, будет успевать возрасти только до определённого значения перед тем, как ток источника питания изменит знак на противоположный.

    Тоесть напряжение (на выводах катушки индуктивности) не будет успевать упасть до нуля, как в случае цепи постоянного тока.

    Чем выше частота, тем выше напряжение на выводах катушки индуктивности (сопротивление увеличивается).

    Фазные соотношения

    Фаза напряжения приложенного к чисто реактивному устройству (устройству с нулевым активным сопротивлением) отстаёт от фазы тока на Pi/2 для ёмкости и опережает фазу тока на Pi/2 для индуктивности. Необходимо отметить, что для определения соотношений между током и напряжением необходимо знать как активное, так и реактивное сопротивление.

    Причина различных знаков ёмкостного и индуктивного сопротивлений заключается в определении фазной переменной импеданса.

    Для реактивного элемента цепи синусоидальное напряжение на элементе сдвинуто по фазе на 90 градусов (Pi/2 радиан) относительно тока. Элемент поочерёдно то поглащает энергию из сети, то затем возвращает энергию обратно в сеть, поэтому чисто реактивное сопротивление не поглащает энергию.

Источник: http://electron287.narod.ru/pages/rus_reactance.htm

Ссылка на основную публикацию