Устройство воздушных лэп разного напряжения

Лэп – это проводная или кабельная линия передачи электроэнергии

Как можно обозначит значение линий электропередач? Есть ли точное определение проводам, по которым передается электроэнергия? В межотраслевых правилах технической эксплуатации электроустановок потребителей есть точное определение.

Итак, ЛЭП – это, во-первых, электрическая линия. Во-вторых, это участки проводов, которые выходят за пределы подстанций и электрических станций.

В-третьих, основное назначение линий электропередач – это передача электрического тока на расстоянии.

Железные опоры ЛЭП

Классификация

По тем же правилам МПТЭЭП производится разделение ЛЭП на воздушные и кабельные.

Но необходимо отметить, что по линиям электропередач производится также передача высокочастотных сигналов, которые используются для передачи телеметрических данных, для диспетчерского управления различными отраслями, для сигналов противоаварийной автоматики и релейной защиты. Как утверждает статистика, 60000 высокочастотных каналов сегодня проходят по линиям электропередач. Скажем прямо, показатель значительный.

Воздушные ЛЭП

Воздушные линии электропередач, их обычно обозначают буквами «ВЛ» — это устройства, которые располагаются на открытом воздухе.

То есть, сами провода прокладываются по воздуху и закрепляются на специальной арматуре (кронштейны, изоляторы). При этом их установка может проводиться и по столбам, и по мостам, и по путепроводам.

Не обязательно считать «ВЛ» те линии, которые проложены только по высоковольтным столбам.

Что входит в состав воздушных линий электропередач:

  • Основное – это провода.
  • Траверсы, с помощью которых создаются условия невозможности соприкосновения проводов с другими элементами опор.
  • Изоляторы.
  • Сами опоры.
  • Контур заземления.
  • Молниеотводчики.
  • Разрядники.

То есть, линия электропередач – это не просто провода и опоры, как видите, это достаточно внушительный список различных элементов, каждый из которых несет свои определенные нагрузки. Сюда же можно добавить оптоволоконные кабели, и вспомогательное к ним оборудование. Конечно, если по опорам ЛЭП проводятся высокочастотные каналы связи.

Строительство ЛЭП, а также ее проектирование, плюс конструктивные особенности опор определяются правилами устройства электроустановок, то есть ПУЭ, а также различными строительными правилами и нормами, то есть СНиП.

Вообще, строительство линий электропередач – дело непростое и очень ответственное. Поэтому их возведением занимаются специализированные организации и компании, где в штате есть высококвалифицированные специалисты.

Классификация воздушных линий электропередач

Сами воздушные высоковольтные линии электропередач делятся на несколько классов.

По роду тока:

  • Переменного,
  • Постоянного.

В основе своей воздушные ВЛ служат для передачи переменного тока. Редко можно встретить второй вариант. Обычно он используется для питания сети контактной или связной для обеспечения связью несколько энергосистем, есть и другие виды.

По напряжению воздушные ЛЭП делятся по номиналу этого показателя. Для информации перечислим их:

  • для переменного тока: 0,4; 6; 10; 35; 110; 150; 220; 330; 400; 500; 750; 1150 киловольт (кВ);
  • для постоянного используется всего один вид напряжение – 400 кВ.

При этом линии электропередач напряжением до 1,0 кВ считаются низшего класса, от 1,0 до 35 кВ – среднего, от 110 до 220 кВ – высокого, от 330 до 500 кВ – сверхвысокого, выше 750 кВ ультравысокого.

Необходимо отметить, что все эти группы отличаются друг от друга лишь требованиями к расчетным условиям и конструктивным особенностям. Во всем остальном – это обычные высоковольтные линии электропередач.

Источник: http://OnlineElektrik.ru/eprovodka/cabeli/lep-eto-provodnaya-ili-kabelnaya-liniya-peredachi-elektroenergii.html

Устройство ЛЭП

Классификация линий электропередачи

Электричество в наше время это основной вид энергии используемый повсюду. Повсеместное использование её стало возможным благодаря электрическим сетям, которые объединяют источники и потребителей электроэнергии.

Линии электропередачи или сокращённо ЛЭП выполняют функцию транспортировки электричества.

Они прокладываются либо над поверхностью земли и именуются «воздушными», либо заглубляются в землю и или под воду и именуются «кабельными».

Воздушные линии электропередачи, несмотря на их сложную инфраструктуру получаются более дешёвыми по сравнению с кабельными линиями. Сам по себе высоковольтный кабель является дорогим и сложным изделием.

По этой причине этими кабелями прокладываются только некоторые участки на трассе воздушной ЛЭП в тех местах, где невозможно установить опоры с проводами, например через морские проливы, широкие реки и т.п.

Кабелями прокладываются электрические сети в населённых пунктах, где сооружение опор также невозможно из-за городской инфраструктуры.

ЛЭП, несмотря на большую протяжённость это всё те же электрические цепи, для которых закон Ома применим так же, как и для остальных. Поэтому экономичность ЛЭП напрямую связана с увеличением напряжения в ней.

Сила тока уменьшается, а вместе с ней и потери становятся меньше. По этой причине, чем дальше от электростанции расположены потребители, тем более высоковольтной должна быть ЛЭП.

Современные сверхдальние ЛЭП передают электрическую энергию с напряжениями в миллионы вольт.

Но увеличение напряжения с целью уменьшения потерь имеет ограничения. Причиной их является коронный разряд. Это явление проявляется, вызывая ощутимые потери энергии, начиная с напряжений выше 100 киловольт.

Жужжание и потрескивание высоковольтных проводов является следствием коронного разряда на них.

По этой причине, с целью уменьшения потерь на коронный разряд, начиная с 220 киловольт, применяется два провода и более для каждой фазы воздушной ЛЭП.

Протяжённость линий электропередачи и рабочее напряжение их являются взаимосвязанными.

  • С напряжениями от 500 киловольт работают сверхдальние ЛЭП.
  • 220 и 330 киловольт это напряжения для магистральных линий электропередачи.
  • 150, 110, и 35 киловольт это напряжения распределительных ЛЭП.
  • Напряжения 20 киловольт и менее характерны для местных электросетей, по которым снабжаются электроэнергией конечные потребители.

Опоры для проводов

Кроме проводов в состав линий электропередачи в качестве главных конструктивных элементов входят опоры. Их назначение это удерживание проводов. В каждой ЛЭП есть несколько разновидностей опор, что показано на изображении ниже:

Анкерные опоры воспринимают большие нагрузки и поэтому имеют прочную жёсткую конструкцию, которая может быть весьма разнообразной. Все опоры соприкасаются со слабым или сырым грунтом через бетонный фундамент. В прочном грунте делаются скважины, в которые непосредственно погружаются опоры ЛЭП.  Примеры конструкций металлических анкерных опор показаны на изображении далее:

Опоры также могут быть изготовлены с применением бетона или древесины. Деревянные опоры хотя и менее долговечные, но в полтора раза более дешёвые в сравнении с металлическими и бетонными конструкциями.

Особенно оправдано их применение в регионах с сильными морозами и большими запасами древесины. Наиболее широкое распространение деревянные опоры получили в электросетях с напряжением до 1000 Вольт.

Конструкция таких опор показана на изображении далее:

Провода линий электропередачи

Провода современных ЛЭП в основном изготовлены из алюминиевой проволоки. Для местных линий электропередачи применяются провода из чистого алюминия.

Ограничением является длина пролёта между опорами в 100 – 120 метров. Для более протяжённых пролётов применяются провода из алюминия и стали. Такой провод имеет внутри стальной трос, охваченный алюминиевыми жилами.

Трос воспринимает механическую нагрузку, алюминий – электрическую.

Полностью стальные провода применяются только на непротяжённых участках, где необходима максимальная прочность при минимальном весе провода. Все линии электропередачи с напряжением выше 35 киловольт снабжены стальным тросом для защиты от удара молний.

Провода из меди и бронзы в настоящее время применяются только в ЛЭП специального назначения. Медная и алюминиевая проволока используется для изготовления полых трубчатых проводов. Это делается для уменьшения потерь в коронном разряде и для уменьшения радиопомех.

Изображения проводов различной конструкции показаны далее:

Провод для линий электропередачи выбирается с учётом условий работы и возникающих при этом механических нагрузок. В тёплое время года это ветер, который раскачивает провода и увеличивает нагрузку на разрыв.

Зимой к ветру добавляется гололёд. Слой льда на проводах своим весом существенно увеличивает нагрузку на них.

Тем более что понижение температуры приводит к уменьшению длины проводов и усиливает внутренне напряжение в их материале.

Изоляторы и арматура

Для безопасного соединения проводов с опорами используются изоляторы. Материалом для них служит либо электротехнический фарфор, либо закалённое стекло, либо полимер, как показано на изображении ниже:

Стеклянные изоляторы при одних и тех же условиях получаются меньше и легче, чем фарфоровые. Конструктивно изоляторы разделяют на штыревые и подвесные.

Штыревая конструкция для ЛЭП с напряжением выше 35 киловольт не применяется. Механические нагрузки, воспринимаемые подвесными изоляторами больше, нежели у штыревых изоляторов.

По этой причине подвесная конструкция может применяться и на более низких напряжениях вместо штыревых изоляторов.

Подвесной изолятор состоит из отдельных чашек, соединённых в гирлянду. Число чашек зависит от напряжения ЛЭП. Для соединения чашек в гирлянду и всех остальных креплений проводов и изоляторов применяется специальная арматура.

Надёжность, прочность и долговечность в условиях открытой среды определяют такие материалы для изготовления арматуры как сталь и чугун.

При необходимости получения повышенной стойкости к коррозии выполняется покрытие деталей цинком.

К арматуре относятся различные зажимы, распорки, гасители вибрации, сцепные соединители, промежуточные звенья изоляторов, коромысла. Общее представление об арматуре даёт изображение ниже:

Защитные приспособления

Ещё одним компонентом устройства линий электропередачи являются конструкции защищающие оборудование, присоединённое к ЛЭП от атмосферных и коммутационных перенапряжений.

От ударов молний защитой являются трос, протянутый выше всех проводов линии электропередачи и молниеотводы, которые обычно устанавливаются вблизи подстанций. Защитные промежутки располагаются на опорах ЛЭП. Пример такого промежутка показан на изображении слева.

Вблизи подстанций устанавливаются трубчатые разрядники, в которых внутри есть искровой промежуток. Если он пробивается и при этом возникает дуга питаемая током короткого замыкания, выделяется газ, который гасит эту дугу.

Все технические и организационные нюансы по устройству линий электропередачи регулируются Правилами устройства электроустановок (ПУЭ). Какие – либо отступления от этих правил категорически запрещаются и могут рассматриваться как преступление той или иной тяжести в зависимости от последствий оного.

Источник: http://podvi.ru/elektrokompanenty/lep.html

Устройство воздушных линий электропередач — Устройство и расчет электрических сетей — Электроснабжение строительно-монтажных работ

Главная / Электроснабжение строительно-монтажных работ / Устройство и расчет электрических сетей / Устройство воздушных линий электропередач

Воздушной линией называется устройство для передачи и распределения электроэнергии по проводам, расположенным на открытом воздухе, прикрепленным при помощи изоляторов и арматуры к опорам или кронштейнам инженерных сооружений.

Конструктивное устройство воздушной линии характеризуется длиной пролета (расстояние между опорами), расстоянием между проводами соседних фаз, количеством изоляторов, наименьшим расстоянием от провода до земли. Все эти величины регламентированы ПУЭ.

Выбор трассы воздушной линии электропередачи

При выборе трассы воздушной линии электропередачи следует стремиться к тому, чтобы она была по возможности прямой. Необходимо обеспечить удобный подход к трансформаторным подстанциям и распределительным пунктам. Желательно также иметь наименьшее количество пересечений линии с другими инженерными коммуникациями.

Опоры воздушных линий

Опоры воздушных линий разнообразны по конструкции. Большая часть опор на линии служит только для поддержания проводов на высоте. Такие опоры называются промежуточными (смотрите рисунок ниже положение – a).

Анкерные опоры

Анкерные опоры (смотрите рисунок ниже положение – б) устанавливаются в начале и конце линии (концевые опоры), с обеих сторон переходов через автомобильные и железные дороги, реки и другие препятствия. На прямых участках анкерные опоры устанавливаются через каждые 2—3 км.

Железобетонные опорывоздушных линий 6—10 кВа — промежуточные;б — анкерные.

Их рассчитывают на устойчивость при одностороннем обрыве всех проводов. В местах поворота линии устанавливают угловые опоры.

Опоры линий электропередачи изготавливают из дерева, металла, железобетона. В последнее время железобетонные опоры, которые в условиях строительства следует рассматривать как инвентарное устройство, получают преимущественное распространение.

Провода подвешиваются на опорах с помощью штыревых и подвесных изоляторов. Для линий с напряжением до 1000 В применяются штыревые изоляторы. Для линий с напряжением 6 и 10 кВ применяются штыревые и подвесные изоляторы. Провода воздушных линий напряжением 35 кВ и выше, как правило, подвешиваются на подвесных изоляторах.

Читайте также:  Электрооборудование сверлильных станков с чпу

Изоляторы крепятся на опорах при помощи крюков, штырей и специальных скоб.

Механическая прочность воздушных линий обеспечивается соответствующим выбором сечения и натяжения проводов, типом изоляторов и конструкцией опор.

«Электроснабжение строительно-монтажных работ», Г.Н. Глушков

К расчету стальных проводов, шинопроводов, токопроводов (троллейных линий)

Сечения алюминиевых проводов, выбранные по условиям механической прочности, оказываются неиспользованными в электрическом отношении.

Такие случаи в условиях строительного производства особенно часты, когда плотность тока нагрузки мала. Кроме того, сталь имеет проводимость в 5—9 раз меньше, чем алюминий и тем более медь.

Сталь обладает большей механической прочностью, что позволяет удлинить пролеты между опорами. Применение стальных шинопроводов…

Распределительные щиты и пункты

Распределительные устройства предназначены для приема и распределения электрической энергии. Конструктивно распределительные устройства выполняются в виде щитков, сборок, шкафов или однопанельных и многопанельных щитов.

В большинстве случаев распределительные устройства снабжены предохранителями или автоматами, защищающими отдельные цепи электроустановки и присоединенное к ним электрооборудование, от токов перегрузки и короткого замыкания.

При необходимости контроля тока, напряжения мощности и других…

Силовые распределительные пункты

Силовые распределительные пункты серии СУ-9500 со встроенными в них установочными 2х полосными автоматическими выключателями А-3110 и А-3130 применяются в силовых установках с двухпроводной системой распределения тока до 220 В, с трех- и четырехпроводной системой распределения трехфазного переменного тока 50 Гц до 380 В. В настоящее время их используют на действующих установках. На новых установках применяют…

Пример 3. От трансформаторной подстанции с номинальным напряжением на низкой стороне 380/220 В проложена электрическая сеть на строительную площадку (смотрите рисунок ниже).

Расчетная схема электрической сети Электродвигатели, указанные на схеме, — короткозамкнутые, асинхронные, осветительная нагрузка — симметричная.

Сеть предполагается выполнить: от шин ТП до щитка РЩ-1 четырехжильным кабелем с медными жилами, проложенным по стене; от…

Работа комбинированного расцепителя

Если автомат имеет комбинированный расцепитель, срабатывающий мгновенно при токах короткого замыкания и с выдержкой времени при перегрузке цепи свыше 35%, то должно соблюдаться условие Iуст≥Ip; Iуст≥ Iпуск/α Нели же имеется только максимальный мгновенно действующий расцепитель, то условие приобретает следующий вид: Iуст≤Iд. Весьма важно при выборе плавких вставок и уставок автоматов обеспечить избирательность их действия. Для…

Источник: https://www.ktovdome.ru/70/451/16345.html

Воздушные линии электропередач переменного тока

Воздушная электрическая линия (ВЛ) – это устройство, назначением которого является передача и распределение электроэнергии по проводам, которые расположены на открытом воздухе.

Основные конструкции воздушных линий – опоры, провода, изоляторы.

Для выполнения воздушных линий наиболее часто используются провода из алюминия, меди, стали, а также различных сплавов. Применятся при прокладке воздушных линий могут, как однопроволочные, так и многопроволочные провода.

Токоведущая жила многопроволочного провода состоит из большого количества свитых вместе проволок, сумма площадей поперечных сечений которых даст результирующее сечение.

Многопроволочные провода изготавливаются либо из одного металла, либо из нескольких (например, сталеалюминевые). Многопроволочные провода получили наибольшее распространение в воздушных сетях. Это вызвано тем, что многопроволочные провода, при одинаковом сечении с однопроволочными, более гибкие, а это очень большой плюс при выполнении монтажных работ.

При сильных порывах ветра провода раскачиваются и вибрируют, что приводит к значительным механическим напряжениям, а также к усталости металла. И в этом случае многопроволочные провода имеют преимущества над однопрволочными, так как временные сопротивления на разрыв у проволок малого диаметра значительно выше, чем у проволок большого диаметра изготовленных из одного материала.

Медные провода

Медный провод, изготовленный из твердотянутой меди, имеет более высокую удельную электрическую проводимость  (ν = 54 м/(Ом∙мм2)) по сравнению с другими, изготовленными из прочих материалов. Поэтому, при равных потерях на нагревании, сечения медного провода будет меньше, чем провода из другого металла.

Более того, изделия из меди обладают большей механической прочностью, а именно большим сопротивлением на разрыв (σ = 40 кГ/мм2). Они имеют довольно хорошее сопротивление изменению атмосферных условий и химических примесей, которые находятся в воздухе. Но из-за довольно большой стоимости меди, использование ее для сооружения воздушных сетей строго лимитируется.

Алюминиевые провода

Данный материал имеет электрическую проводимость хуже, чем медь. А если быть точным, то проводимость алюминия в 1,6 раз меньше, чем меди (ν = 33 м/(Ом∙мм2)).

Помимо проводимость алюминий имеет еще и худшую прочность (σ = 15-16 кГ/мм2).

Поэтому, в прошлом веке он активно применялся для сооружения внутренних сетей жилых и промышленных зданий, после чего его начала вытеснять медь, но тенденции снова начали меняться.

Сталеалюминиевые провода

Их механическая прочность значительно выше чем у алюминиевых. Применяют их довольно часто в сетях напряжением 35 кВ и выше при значительных расстояниях между опорами.

Конструктивно, сталеалюминиевые провода состоят из стального сердечника, который обеспечивают большую механическую прочность (σ = 110-120 кГ/мм2), и алюминиевой оболочки, обеспечивающей проводимость, то есть являющейся основной токоведущей частью.

При расчетах для сталеалюминиевых проводов принимают σ = 24-25 кГ/мм2.

Стальные провода

Они обладают очень низкой электрической проводимостью (ν = 7,52 м/(Ом∙мм2)), но очень большой механической прочностью.

Они нашли свое применение в электрических сетях высокого и низкого напряжения различных фермерских хозяйств, небольших поселков и городов.

Поскольку электрическая проводимость стальных проводов очень низкая, то их целесообразно применять только в сетях небольшой мощности. Также они сильно подвержены коррозии, что вызывает необходимость покрывать их тонким слоем цинка.

Выбор проводов и изоляторов для воздушных линий

Выполнение расчетов сечений проводов, расстояний между ними и их количеством в фазе определяется специальными алгоритмами расчетов с учетом физико-механических свойств материалов, которые будут рассмотрены в следующих статьях.

При проведении расчетов и выборе проводов по условиям механической прочности необходимо руководствоваться ПУЭ и соответствующими нормативными документами. Ниже приведена таблица, с указаниями минимальных сечений проводов в зависимости от места прохождения и напряжения:

Для маркировки проводов применяются буквенно-цифровые обозначения.  Здесь цифры обозначают сечение провода в мм, а буквы – материал из которого он изготовлен. Например, АС-70 сталеалюминиевый с сечением 70 мм2, М-16 медный с сечением 16 мм2, ПС-50 стальной с сечением 50мм2.

Крепеж воздушных линий производится на опорах при помощи изоляторов. В зависимости от диаметров (сечений) проводов, а также от напряжения линии происходит выбор соответствующего изолятора. Для воздушных линий с напряжением до 500 В применяются штыревые фарфоровые изоляторы.

Изоляторы типа ТФ и АИК устанавливают на участках линий, не имеющих ответвлений. В местах ответвлений или разветвлений устанавливают изоляторы многошейковые типа ШО.

Для линий, напряжение питания которых составляет 3 – 6 – 10 кВ, используют высоковольтные изоляторы штыревые типа ШС. Линии с напряжением 20 – 35 кВ могут подвешиваться на опорах как при помощи фарфоровых штыревых изоляторов ШД, так и при помощи подвесных изоляторов П.

Но, стоит отметить, что для линий напряжением 35 кВ целесообразней применение подвесных изоляторов, так как они меньше по размерам.

Для линий, имеющих напряжение 35 – 220 кВ и выше, применяют подвесные изоляторы, которые набираются в гирлянды, а количество изоляторов в гирлянде напрямую зависит от материала опор и напряжения линии.

Крепление штыревых изоляторов происходит путем ввертывания стальных крюков непосредственно в тело деревянной опоры. Также крепление может происходить при помощи стальных штырей в случае установки изоляторов на металлическом траверсе, который потом крепится к опоре при помощи стального хомута.

Источник: http://elenergi.ru/vozdushnye-linii-elektroperedach-peremennogo-toka.html

Воздушные линии электропередачи ЛЭП: конструкция, разновидности, параметры

Основными элементами воздушных линий являются провода, изоляторы, линейная арматура, опоры и фундаменты. На воздушных линиях переменного трехфазного тока подвешивают не менее трех проводов, составляющих одну цепь; на воздушных линиях постоянного тока — не менее двух проводов.

По количеству цепей ВЛ подразделяются на одно, двух и многоцепные. Количество цепей определяется схемой электроснабжения и необходимостью ее резервирования.

Если по схеме электроснабжения требуются две цепи, то эти цепи могут быть подвешены на двух отдельных одноцепных ВЛ с одноцепными опорами или на одной двухцепной ВЛ с двухцепными опорами.

Расстояние / между соседними опорами называют пролетом, а расстояние между опорами анкерного типа — анкерным участком.

Провода, подвешиваемые на изоляторах (А, — длина гирлянды) к опорам (рис. 5.1, а), провисают по цепной линии. Расстояние от точки подвеса до низшей точки провода называется стрелой провеса /.

Она определяет габарит приближения провода к земле А, который для населенной местности равен: до поверхности земли до 35 и ПО кВ — 7 м; 220 кВ — 8 м; до зданий или сооружений до 35 кВ — 3 м; 110 кВ — 4 м; 220 кВ — 5 м. Длина пролета / определяется экономическими условиями.

Длина пролета до 1 кВ обычно составляет 30…75 м; ПО кВ — 150…200 м; 220 кВ — до 400 м.

Разновидности опор электропередач

В зависимости от способа подвески проводов опоры бывают:

  1. промежуточные, на которых провода закрепляют в поддерживающих зажимах;
  2. анкерного типа, служащие для натяжения проводов; на этихопорах провода закрепляют в натяжных зажимах;
  3. угловые, которые устанавливают на углах поворота ВЛ с подвеской проводов в поддерживающих зажимах; они могут быть промежуточные, ответвительные и угловые, концевые, анкерные угловые.

На ВЛ применяют деревянные опоры (рис. 5Л, б, в), деревянные опоры нового поколения (рис. 5.1, г), стальные (рис. 5.1, д) и железобетонные опоры.

Деревянные опоры ВЛ

Деревянные опоры ВЛ все еще имеют распространение в странах, располагающих лесными запасами. Достоинствами дерева как материала для опор являются: небольшой удельный вес, высокая механическая прочность, хорошие электроизоляционные свойства, природный круглый сортамент. Недостатком древесины является ее гниение, для уменьшения которого применяют антисептики.

Для ВЛ напряжением 20 и 35 кВ, на которых применяют штыревые изоляторы, целесообразно применение одностоечных свечеобразных опор с треугольным расположением проводов. На воздушных ЛЭП 6 —35 кВ со штыревыми изоляторами при любом расположении проводов расстояние между ними D, м, должно быть не меньше значений, определяемых по формуле

где U — напряжение линии, кВ; — наибольшая стрела провеса, соответствующая габаритному пролету, м; Ь — толщина стенки гололеда, мм (не более 20 мм).

Для ВЛ 35 кВ и выше с подвесными изоляторами при горизонтальном расположении проводов минимальное расстояние между проводами, м, определяется по формуле

Стойку опоры выполняют составной: верхнюю часть (собственно стойку) — из бревен длиной 6,5…8,5 м, а нижнюю часть (так называемый пасынок) — из железобетона сечением 20 х 20 см, длиной 4,25 и 6,25 м или из бревен длиной 4,5…6,5 м.

Составные опоры с железобетонным пасынком сочетают в себе преимущества железобетонных и деревянных опор: грозоустойчивость и сопротивляемость гниению в месте касания с грунтом.

Соединение стойки с пасынком выполняют проволочными бандажами из стальной проволоки диаметром 4…6 мм, натягиваемой при помощи скрутки или натяжным болтом.

Анкерные и промежуточные угловые опоры для ВЛ 6 — 10 кВ выполняют в виде Аобразной конструкции с составными стойками.

Стальные опоры электропередачи

Стальные опоры широко применяют на ВЛ напряжением 35 кВ и выше. 

По конструктивному исполнению стальные опоры могут быть двух видов:

  1. башенные или одностоечные (см. рис. 5.1, д);
  2. портальные, которые по способу закрепления подразделяютсяна свободностоящие опоры и опоры на оттяжках.
Читайте также:  Электрооборудование лесопильных рам

Опоры изготавливают из стального углового проката (в основном применяют равнобокий уголок); высокие переходные опоры могут быть изготовлены из стальных труб. В узлах соединения элементов применяют стальной лист различной толщины. Независимо от конструктивного исполнения стальные опоры выполняют в виде пространственных решетчатых конструкций.

Железобетонные опоры электропередачи

Железобетонные опорыпо сравнению с металлическими более долговечны и экономичны в эксплуатации, так как требуют меньше ухода и ремонта (если брать жизненный цикл, то железобетонные — более энергозатратны).

Основное преимущество железобетонных опор — уменьшение расхода стали на 40…75%, недостаток — большая масса.

По способу изготовления железобетонные опоры подразделяются на бетонируемые на месте установки (большей частью такие опоры применяют зарубежом) и заводского изготовления. 

Крепление траверс к стволу стойки железобетонной опоры выполняют с помощью болтов, пропущенных через специальные отверстия в стойке, или с помощью стальных хомутов, охватывающих ствол и имеющих цапфы для крепления на них концов поясов траверс. Металлические траверсы предварительно подвергают горячей оцинковке, поэтому они долгое время не требуют при эксплуатации специального ухода и наблюдения.

Материалы проводов и тросов должны иметь высокую электрическую проводимость, обладать достаточной прочностью, выдерживать атмосферные воздействия (в этом отношении наибольшей стойкостью обладают медные и бронзовые провода; провода из алюминия подвержены коррозии, особенно на морских побережьях, где в воздухе содержатся соли; стальные провода разрушаются даже в нормальных атмосферных условиях).

Для ВЛ применяют однопроволочные стальные провода диаметром 3,5; 4 и 5 мм и медные провода диаметром до 10 мм.

Ограничение нижнего предела обусловлено тем, что провода меньшего диаметра имеют недостаточную механическую прочность.

Верхний предел ограничен из-за того, что изгибы однопроволочного провода большего диаметра могут вызвать в его внешних слоях такие остаточные деформации, которые будут снижать его механическую прочность.

Диаметры отдельных проволок и их количество подбирают так, чтобы сумма поперечных сечений отдельных проволок дала требуемое общее сечение провода.

Как правило, многопроволочные провода изготавливают из круглых проволок, причем в центре помещается одна или несколько проволок одинакового диаметра. Длина скрученной проволоки немного больше длины провода, измеренной по его оси.

Это вызывает увеличение фактической массы провода на 1 …2 % по сравнению с теоретической массой, которая получается при умножении сечения провода на длину и плотность.

Во всех расчетах принимается фактическая масса провода, указанная в соответствующих стандартах.

Марки неизолированных проводов обозначают:

  • буквами М, А, АС, ПС — материал провода;
  • цифрами — сечение в квадратных миллиметрах.

Алюминиевая проволока А может быть:

  • марки AT (твердой неоттоженной)
  • AM (отожженной мягкой) сплавов АН, АЖ;
  • АС, АСХС — из стального сердечника и алюминиевых проволок;
  • ПС — из стальных проволок;
  • ПСТ — из стальной оцинкованной проволоки.

Например, А50 обозначает алюминиевый провод, сечение которого равно 50 мм2;

  • АС50/8 — сталеалюминевый провод сечением алюминиевой части 50 мм2, стального сердечника 8 мм2 (в электрических расчетах учитывается проводимость только алюминиевой части провода);
  • ПСТЗ,5, ПСТ4, ПСТ5 — однопроволочные стальные провода, где цифры соответствуют диаметру провода в миллиметрах.

Сечение многопроволочных проводов различных марок определяется для ВЛ напряжением до 35 кВ по условиям механической прочности, а для ВЛ напряжением ПО кВ и выше — по условиям потерь на корону.

На ВЛ при пересечении различных инженерных сооружений (линий связи, железных и шоссейных дорог и т.д.

) необходимо обеспечивать более высокую надежность, поэтому минимальные сечения проводов в пролетах пересечений должны быть увеличены (табл. 5.2).

При обтекании проводов потоком воздуха, направленным поперек оси ВЛ или под некоторым углом к этой оси, с подветренной стороны провода возникают завихрения. При совпадении частоты образования и перемещения вихрей с одной из частот собственных колебаний провод начинает колебаться в вертикальной плоскости.

Обычно вибрация проводов наблюдается при скорости ветра 0,6… 12,0 м/с;

Стальные провода не допускаются в пролетах над трубопроводами и железными дорогами.

Вибрация, как правило, имеет место в пролетах длиной более 120 м и на открытой местности. Опасность вибрации заключается в обрыве отдельных проволок провода на участках их выхода из зажимов изза повышения механического напряжения. Возникают переменные напряжения от периодических изгибов проволок в результате вибрации и сохраняются в подвешенном проводе основные растягивающие напряжения.

В пролетах длиной до 120 м защиты от вибрации не требуется; не подлежат защите и участки любых ВЛ, защищенных от поперечных ветров; на больших переходах рек и водных пространств требуется защита независимо от напряжения в проводах. На ВЛ напряжением 35 …220 кВ и выше защиту от вибрации выполняют путем установки виброгасителей, подвешенных на стальном тросе, поглощающих энергию вибрирующих проводов с уменьшением амплитуды вибрации около зажимов.

При гололеде наблюдается так называемая пляска проводов, которая, так же как и вибрация, возбуждается ветром, но отличается от вибрации большей амплитудой, достигающей 12… 14 м, и большей длиной волны (с одной и двумя полуволнами в пролете). В плоскости, перпендикулярной оси ВЛ, провод На напряжении 35 — 220 кВ провода изолируют от опор гирляндами подвесных изоляторов. Для изоляции ВЛ 6 —35 кВ применяют штыревые изоляторы.

Электрический ток, проходя по проводам ВЛ, выделяет теплоту и нагревает провод. Под влиянием нагрева провода происходят:

  1. удлинение провода, увеличение стрелы провеса, изменение расстояния до земли;
  2. изменение натяжения провода и его способности нести механическую нагрузку;
  3. изменение сопротивления провода, т. е. изменение потерь электрической мощности и энергии.

Все условия могут изменяться при наличии постоянства параметров окружающей среды или изменяться совместно, воздействуя на работу провода ВЛ.

При эксплуатации ВЛ считают, что при номинальном токе нагрузки температура провода составляет 60…70″С. Температура провода будет определяться одновременным воздействием тепловыделения и охлаждения или теплоотвода.

Теплоотвод проводов ВЛ возрастает с увеличением скорости ветра и понижением температуры окружающего воздуха.

Для определения воздействия перегрузки на увеличение потерь напряжения сначала определяется

где RQ — сопротивление провода при температуре 02, Ом; R0] — сопротивление провода при температуре, соответствующей расчетной нагрузке в условиях эксплуатации, Ом; А/.у.с — коэффициент температурного увеличения сопротивления, Ом/°С.

Увеличения потери напряжения AUпри перегрузке до 30 % можно ожидать:

  1. при расчете ВЛ на AU =5% А?/30 = 5,6%;
  2. при расчете ВЛ на А17= 10 % Д?/30 = 11,2 %.

При перегрузке ВЛ до 50 % увеличение потери напряжения будет равно соответственно 5,8 и 11,6 %. Учитывая график нагрузки, можно отметить, что при перегрузке ВЛ до 50 % потери напряжения кратковременно превышают допустимые нормативные значения на 0,8… 1,6 %, что существенно не влияет на качество электроэнергии.

Применение провода СИП

Используется СИП в городах как обязательнаяпрокладка, как магистраль в сельских зонах со слабой плотностью населения, ответвления к потребителям. Способы прокладки СИП различны: натягивание на опорах; натягивание по фасадам зданий; прокладка вдоль фасадов.

Конструкция СИП (униполярных бронированных и небронированных, триполярных с изолированной или голой несущей нейтралью) в общем случае состоит из медной или алюминиевой проводниковой многопроволочной жилы, окруженной внутренним полупроводниковым экструдированным экраном, затем — изоляцией из шитого полиэтилена, полиэтилена или ПВХ. Герметичность обеспечивается порошком и компаундированной лентой, поверх которых расположен металлический экран из меди или алюминия в виде спирально уложенных нитей или ленты, с использованием экструдированного свинца.

При небольшом повышении затрат (около 20 %) по сравнению с неизолированными проводами надежность и безопасность линии, оснащенной СИП, повышается до уровня надежности и безопасности кабельных линий.

Одним из преимуществ воздушных линий с изолированными проводами ВЛИ перед обычными ЛЭП является снижение потерь напряжения и мощности за счет уменьшения реактивного сопротивления.

Параметры прямой последовательности линий:

  • АСБ95 — R = 0,31 Ом/км; Х= 0,078 Ом/км;
  • СИП495 — соответственно 0,33 и 0,078 Ом/км;
  • СИП4120 — 0,26 и 0,078 Ом/км;
  • АС120 — 0,27 и 0,29 Ом/км.

Эффект от снижения потерь напряжения при применении СИП и неизменности тока нагрузки может составлять от 9 до 47 %, потерь мощности — 18 %.

Источник: http://pue8.ru/transport-elektroenergii/48-vozdushnye-linii-elektroperedachi.html

Устройство воздушных ЛЭП

Рассмотрим подробнее устройство воздушных ЛЭП. Воздушные линии электропередачи состоят из опорных конструкций (опор и оснований), траверс (или кронштейнов), проводов, изоляторов и арматуры.

Кроме того, в состав ВЛ входят устройства, необходимые для обеспечения бесперебойного электроснабжения потребителей и нормальной работы линии: грозозащитные тросы, разрядники, заземление, а также вспомогательное оборудование.

Опоры воздушной линии электропередачи поддерживают провода на заданном расстоянии друг от друга и от поверхности земли.

А опоры воздушных линий напряжением до 1000 В могут быть использованы также для развешивания на них проводов радиосети, местной телефонной связи, наружного освещения.

Воздушные линии отличаются простотой эксплуатации и ремонта, более низкой стоимостью по сравнению с кабельными линиями такой же протяженности.

В зависимости от назначения бывают опоры промежуточные и анкерные.

Промежуточные опоры устанавливают на прямых участках трассы ВЛ, и предназначены они только для поддержания проводов. Анкерные опоры устанавливают для перехода BJI через инженерные сооружения или естественные преграды, в начале, в конце и на поворотах ЛЭП.

Анкерные опоры воспринимают продольную нагрузку от разности тяже-ния проводов и тросов в смежных анкерных пролетах. Тяжением называют усилие, с которым натягивают и закрепляют на опорах провод или трос.

Тяжение изменяется в зависимости от силы ветра, температуры окружающего воздуха, толщины льда на проводах.

Горизонтальные расстояния между центрами двух опор, на которых подвешены провода, называют пролетом. Вертикальное расстояние между низшей точкой провода в пролете до пересекаемых инженерных сооружений или до поверхности земли или воды носит название габарита провода.

Стрелой провеса провода называют вертикальные расстояния между низшей точкой провода в пролете и горизонтальной прямой, соединяющей точки крепления провода на опорах.

Силовые и осветительные сети напряжением до 1000 В, выполненные изолированными проводами всех соответствующих сечений или небронированными кабелями с резиновой или пластмассовой изоляцией сечением до 16 мм2, относят к электропроводке.

Наружной считают электропроводку, проложенную по наружным стенам зданий и сооружений, между зданиями, под навесами, а также на опорах (не более 4 пролетов, каждый длиной 25 м) вне улиц и дорог.

Внимание!
Прокладывают провода на высоте не менее 2,75 м от поверхности земли. При пересечении пешеходных дорожек это расстояние делают не менее 3,5 м, а при пересечении проездов и путей для перевозки грузов — не менее 6 м.

Силовые кабельные ЛЭП Для передачи и распределения электроэнергии наряду с воздушными линиями электропередачи применяют силовые кабельные линии. Силовые кабели прокладывают в земле, воде, а также по конструкциям на открытом воздухе, в туннелях, каналах, железобетонных блоках и внутри зданий. Их используют главным образом для передачи электроэнергии на сравнительно небольшие расстояния и в тех случаях, когда сооружение воздушных линий нежелательно или недопустимо. Кабельные линии, проложенные в земле, не подвергаются действию ветра, гололеда, грозовых разрядов. Повреждения в кабельных линиях не так опасны для населения, как обрыв проводов воздушных линий. Силовые кабельные ЛЭП применяются для подземной и подводной передачи электроэнергии на высоком и низком напряжениях. Трассу выбирают, исходя из условий наименьшего расхода кабеля и обеспечения его наибольшей защищенности от механических повреждений при раскопках, от коррозии, вибрации, перегрева. Кабельные ЛЭП прокладывают в траншеях по непроезжей части улиц, под тротуарами, по дворам.

Внимание!

Кабель не должен проходить под существующими или предполагаемыми к постройке зданиями и сооружениями, под проездами, насыщенными подземными коммуникациями.В местах пересечения с различными трубопроводами (теплопроводы, водопроводы и др.), кабелями связи и иными коммуникациями силовые кабели прокладывают в асбоцементных трубах или железобетонных блоках с соблюдением расстояний между кабелями и другими коммуникациями, установленными «Правилами устройства электроустановок» (ПУЭ). При прохождении кабелей через стены и перекрытия кабели прокладывают в отрезках неметаллических труб.

Читайте также:  Что такое магнитопровод и где он используется

После прокладки концы кабелей должны быть временно загерметизированы. Соединение и оконцевание кабелей осуществляется при помощи кабельных муфт и воронок. Для оконцевания жил используются кабельные наконечники.

Кроме того, кабель в траншее присыпают сверху слоем мелкой земли или песка толщиной 10 см, а для предохранения от механических повреждений его защищают, прикрывая слоем красного кирпича.

Поверх кирпича траншею засыпают выкопанным из нее грунтом.

Внимание!
Глубина заложения кабельной линии в земле для кабелей напряжением до 10 кВ составляет 0,7 м, а при пересечении улиц, автомобильных и железных дорог — 1м.

Источник: http://elektrikvolt.blogspot.com/2013/04/blog-post_676.html

Утсройство воздушных линий электропередачи ВЛЭП

Воздушной линией электропередачи (ВЛ) называют устройство для передачи и распределения электроэнергии по проводам, находящимся на открытом воздухе c прикрепленным при помощи изоляторов и арматуры в опорам или кронштейнам инженерных сооружений (мостов, путепроводов и т. д.). Устройство ВЛ, ее проектирование и строительство должны соответствовать «Правилам устройства электроустановок» (ПУЭ), являющимся обязательными для всех линий электропередачи, кроме специальных (например, контактных сетей трамвая, троллейбуса, железной дороги и др.)

Классификация и режимы работы ВЛ. Воздушные линии электропередачи, как правило, предназначены для передачи переменного трехфазного тока и по назначению делятся на:

– сверхдальние напряжением 500 кВ и выше, служащие в основном для связи между отдельными энергосистемами; – магистральные напряжением 220 и 330 кВ, служащие для передачи энергии от мощных электростанций, а также для связи между энергосистемами и объединения электростанций внутри энергосистем (обычно соединяют электростанции с распределительными пунктами); – распределительные напряжением 35, ПО и 150 кВ, служащие для электроснабжения предприятий и населенных пунктов крупных районов (соединяют распределительные пункты с потребителями и представляют собой разветвленные сети с трансформаторными подстанциями); – линии электропередачи 20 кВ и ниже, служащие для подвода электроэнергии к потребителям. Потребители электроэнергии по надежности электроснабжения делятся на три категории: – к первой относят потребителей, нарушение электроснабжения которых может привести к опасности для жизни людей, повреждению оборудования, массовому браку продукции, нарушению важных элементов городского хозяйства; – ко второй — потребителей, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, простою оборудования и рабочих, нарушению нормальной деятельности значительной части городского населения;

– к третьей — остальных потребителей.

По напряжению воздушные линии электропередачи «Правилами устройства электроустановок» делятся на две группы: ВЛ напряжением до 1000 В (низковольтные) и ВЛ напряжением выше 1000 В (высоковольтные).

Для каждой группы линий установлены технические требования их устройства.

Номинальное линейное напряжение линий трехфазного тока регламентировано ГОСТ 721—62 и может иметь следующие значения: 750, 500, 330, 220, 150, 110, 35, 20, 10, 6 и 3 кВ, а также 660, 380 и 220 В.

По электрическому режиму работы линии делятся на. линии с изолированной нейтралью, когда общая точка обмоток (нейтраль) не присоединена к заземляющему устройству или присоединена к нему через аппараты, имеющие большое сопротивление, и с глухозаземленной нейтралью, когда нейтраль генератора или трансформатора наглухо соединена с землей.

В сетях с изолированной нейтралью изоляция линии должна быть не менее величины линейного напряжения, так как при замыкании одной фазы на землю напряжение двух других фаз относительно земли становится равным линейному.

В сетях с глухозаземленной нейтралью при повреждении одной фазы происходит короткое замыкание через землю и защита линии отключает поврежденный участок. При этом перенапряжения фаз не происходит и изоляцию линии выбирают по фазному напряжению.

Недостатком этих сетей является большая величина тока замыкания на землю и отключение линии при однофазном замыкании на землю. В нашей стране сети с глухозаземленной нейтралью применяют в системах напряжением до 1000 В и от 110 кВ и выше.

В зависимости от механического состояния различают следующие режимы работы ВЛ: – нормальный — провода и тросы не оборваны; – аварийный — провода и тросы оборваны полностью или частично;

– монтажный — в условиях монтажа опор, проводов и тросов.

Механические нагрузки на элементы ВЛ в большой степени зависят от климатических условий района и характера местности, по которой проходит линия.

При проектировании ВЛ за основу берут наибольшее значение величины скорости ветра и толщины стенки гололеда, образующегося на проводах, наблюдаемые в данном районе 1 раз в 15 лет для ВЛ напряжением 500 кВ и 1 раз в 10 лет для ВЛ напряжением 6—330 кВ.

Местность, по которой проходит ВЛ, в зависимости от доступности для людей, транспорта и сельскохозяйственных машин, делится согласно ПУЭ на три категории:

– к населенной местности относят территорию городов, поселков, дере-вень, промышленных и сельскохозяйственных предприятий, портов, пристаней, железнодорожных станций, парков, бульваров, пляжей с учетом границ их развития на ближайшие 10 лет;

– к ненаселенной — незастроенную территорию, частично посещаемую людьми и доступную для транспорта и сельскохозяйственных машин (ненаселенной местностью считают также огороды, сады и местности с отдельными, редко стоящими строениями и временными сооружениями) ;

– к труднодоступной — территорию, недоступную для транспорта и сельскохозяйственных машин.
Устройство и основные элементы ВЛ. Воздушные линии электропередачи состоят из опорных конструкций (опоры и основания), проводов, изоляторов и линейной арматуры.

Кроме того, в состав ВЛ входят устройства, необходимые для обеспечения бесперебойного электроснабжения потребителей и нормальной работы линии: грозозащитные тросы, разрядники, заземления, а также вспомогательное оборудование для нужд эксплуатации (устройства высокочастотной связи, емкостного отбора мощности и др.)

Опоры воздушной линии электропередачи поддерживают провода на заданном расстоянии между собой и от поверхности земли Горизонтальные расстояния между центрами двух опор, на которых подвешены провода, называют пролетом, или длиной пролета. Различают переходной, промежуточный и анкерный пролеты. Анкерный пролет обычно состоит из нескольких промежуточных.

Углом поворота линии называют угол между направлениями линии в смежных пролетах.
Вертикальное расстояние hг (рисунок 1, а) между низшей точкой провода в пролете до пересекаемых инженерных сооружений или до поверхности земли или воды называют габаритом провода.

Рисунок 1 – Габарит (а) и стрела провеса (б) проводов:

F, f — стрела провеса проводов; hг—габарит провода от земли, А, В — точки подвеса провода

Стрелой провеса f провода называют вертикальное расстояние между низшей точкой провода в пролете и горизонтальной прямой, соединяющей точки подвеса провода на опорах.

Если высота точек крепления разная, стрела провеса рассматривается относительно высшей и низшей точек крепления провода (F и f на рисунке 1,б).
Тяжением называют усилие, с которым натягивают и закрепляют на опорах провод или трос.

Тяжение изменяется в зависимости от силы ветра, температуры окружающего воздуха, толщины гололеда на проводах и может быть нормальным или ослабленным.

Запасом прочности, или коэффициентом запаса элементов воздушной линии электропередачи, называют отношение минимальной расчетной нагрузки, разрушающей данный элемент, к величине фактической нагрузки в наиболее тяжелых условиях.

Механическим напряжением материала, называют нагрузку на элементы ВЛ, отнесенную к единице площади их рабочего сечения. Например, тяжение провода, отнесенное к его поперечному сечению, определяет механическое напряжение материала провода.

Временным сопротивлением называют максимально допустимое механическое напряжение материала, после превышения которого начинается разрушение изделия.

Источник: http://diplomka.net/publ/utsrojstvo_vozdushnykh_linij_ehlektroperedachi_vlehp/12-1-0-418

Принципы конструктивного исполнения линий электропередачи

Линии электропередачи — центральный элемент системы передачи и распределения ЭЭ. Линии выполняются преимущественно воздушными и кабельными. На энергоемких предприятиях применяют также токопроводы. па генераторном напряжении электростанций — шинопроводы; в производственных и жилых зданиях — внутренние проводки.

Выбор типа ЛЭП, ее конструктивного исполнения определяется назначением линии, местом расположения (прокладки) и, соответственно, ее номинальным напряжением, передаваемой мощностью, дальностью электропередачи, площадью и стоимостью занимаемой (отчуждаемой) территории, климатическими условиями, требованиями электробезопасности и техническом эстетики и рядом других факторов и, в конечном итоге, экономической целесообразностью передачи электрической энергии. Указанный выбор производится на стадиях принятия проектных решении.

В данном разделе формулируются требования, которыми должны удовлетворять ЛЭП, условия их выполнения и на их основе представляются некоторые принципы и варианты конструктивного исполнения линий электропередачи.

Наиболее распространенны на всех ступенях системы электроснабжения воздушные линии ввиду их относительно малой стоимости. По этой причине применение ВЛ должно рассматриваться в первую очередь.

Воздушные линии электропередачи

Воздушными называются линии, предназначенные для передачи и распределения ЭЭ по проводам, расположенным на открытом воздухе и поддерживаемым с помощью опор и изоляторов.

Воздушные ЛЭП сооружаются и эксплуатируются в самых разнообразных климатических условиях и географических районах, подвержены атмосферному воздействию (ветер, гололед, дождь, изменение температуры).

В связи с этим ВЛ должны сооружаться с учетом атмосферных явлений, загрязнения воздуха, условий прокладки (слабозаселенная местность, территория города, предприятия) и др.

Из анализа условий ВЛ следует, что материалы и конструкции линий должны удовлетворять ряду требований: экономически приемлемая стоимость, хорошая электропроводность и достаточная механическая прочность материалов проводов и тросов, стойкость их к коррозии, химическим воздействиям; линии должны быть электрически и экологически безопасны, занимать минимальную территорию.

Конструктивное исполнение воздушных линий. Основными конструктивными элементами ВЛ являются опоры, провода, грозозащитные тросы, изоляторы и линейная арматура.

По конструктивному исполнению опор наиболее распространены одно- и двухцепные ВЛ. На трассе линии могут сооружаться до четырех цепей. Трасса линии — полоса земли, на которой сооружается линия.

Одна цепь высоковольтной ВЛ объединяет три провода (комплекта проводов) трехфазной линии, в низковольтной — от трех до пяти проводов. В целом конструктивная часть ВЛ (рис.

1) характеризуется типом опор, длинами пролетов, габаритными размерами, конструкцией фаз, количеством изоляторов.

Длины пролетов ВЛ выбирают по экономическим соображениям, т. к. с увеличением длины пролетов возрастает провис проводов, необходимо увеличить высоту опор

Н, чтобы не нарушить допустимый габарит линии h (рис. 1. б), при этом уменьшится количество опор и изоляторов на линии. Габарит линии —наименьшее расстояние от нижней точки провода до земли (воды, полотна дорога) — должен был. таким, чтобы обеспечить безопасность движения людей и транспорта под линией.

Это расстояние зависит от номинальною напряжения линии и условий местности (населенная, ненаселенная). Расстояние между соседними фазами линии зависит главным образом от се номинального напряжения. Основные конструктивные размеры ВЛ приведены в табл. 1.

Конструкция фазы ВЛ в основном определяется количеством проводов в фазе. Если фаза выполнена несколькими проводами, она называется расщепленной. Расщепленными выполняют фазы ВЛ высокою и сверхвысокого напряжения.

При этом в одной фазе используют два провода при 330 (220) кВ, три –при 500 кВ, четыре – пять при 750 кВ, восемь-двенадцать – при 1150 кВ.

Опоры воздушных линий. Опоры ВЛ – конструкции, предназначенные для поддерживания проводов на необходимой высоте над, землей, водой и каким-либо инженерным сооружением. Кроме того, на опорах в необходимых случаях подвешивают необходимые стальные заземленные тросы для защиты проводов от прямых ударов молнии и связанных с этим перенапряжением.

Таблица №1

Конструктивные размеры ВЛ

Номинальное напряжение, кВ Расстояние между фазами D, м Длинна пролета l, м Высота опоры Н, м Габарит линии h, м

Источник: http://treugoma.ru/electric-energy/principles/

Ссылка на основную публикацию