Широтно-импульсная модуляция

Широтно-импульсная модуляция (ШИМ)

Широтно-импульсная модуляция (ШИМ) – это метод преобразования сигнала, при котором изменяется длительность импульса (скважность), а частота остаётся константой. В английской терминологии обозначается как PWM (pulse-width modulation). В данной статье подробно разберемся, что такое ШИМ, где она применяется и как работает.

Область применения

С развитием микроконтроллерной техники перед ШИМ открылись новые возможности.

Этот принцип стал основой для электронных устройств, требующих, как регулировки выходных параметров, так и поддержания их на заданном уровне.

Метод широтно-импульсной модуляции применяется для изменения яркости света, скорости вращения двигателей, а также в управлении силовым транзистором блоков питания (БП) импульсного типа.

Широтно-импульсная (ШИ) модуляция активно используется в построении систем управления яркостью светодиодов. Благодаря низкой инерционности, светодиод успевает переключаться (вспыхивать и гаснуть) на частоте в несколько десятков кГц.

Его работа в импульсном режиме воспринимается человеческим глазом как постоянное свечение. В свою очередь яркость зависит от длительности импульса (открытого состояния светодиода) в течение одного периода.

Если время импульса равно времени паузы, то есть коэффициент заполнения – 50%, то яркость светодиода будет составлять половину от номинальной величины. С популяризацией светодиодных ламп на 220В стал вопрос о повышении надёжности их работы при нестабильном входном напряжении.

Решение было найдено в виде универсальной микросхемы – драйвера питания, работающего по принципу широтно-импульсной или частотно-импульсной модуляции. Схема на базе одного из таких драйверов детально описана здесь.

Подаваемое на вход микросхемы драйвера сетевое напряжение постоянно сравнивается с внутрисхемным опорным напряжением, формируя на выходе сигнал ШИМ (ЧИМ), параметры которого задаются внешними резисторами.

Некоторые микросхемы имеют вывод для подачи аналогового или цифрового сигнала управления. Таким образом, работой импульсного драйвера можно управлять с помощью другого ШИ-преобразователя.

Интересно, что на светодиод поступают не высокочастотные импульсы, а сглаженный дросселем ток, который является обязательным элементом подобных схем.

Микроконтроллер Ардуино тоже может функционировать в режиме ШИМ контроллера. Для этого следует вызвать функцию AnalogWrite() с указанием в скобках значения от 0 до 255. Ноль соответствует 0В, а 255 – 5В. Промежуточные значения рассчитываются пропорционально.

Повсеместное распространение устройств, работающих по принципу ШИМ, позволило человечеству уйти от трансформаторных блоков питания линейного типа. Как результат – повышение КПД и снижение в несколько раз массы и размеров источников питания.

ШИМ-контроллер является неотъемлемой частью современного импульсного блока питания. Он управляет работой силового транзистора, расположенного в первичной цепи импульсного трансформатора. За счёт наличия цепи обратной связи напряжение на выходе БП всегда остаётся стабильным.

Малейшее отклонение выходного напряжения через обратную связь фиксируется микросхемой, которая мгновенно корректирует скважность управляющих импульсов.

Кроме этого современный ШИМ-контроллер решает ряд дополнительных задач, способствующих повышению надёжности источника питания:

  • обеспечивает режим плавного пуска преобразователя;
  • ограничивает амплитуду и скважность управляющих импульсов;
  • контролирует уровень входного напряжения;
  • защищает от короткого замыкания и превышения температуры силового ключа;
  • при необходимости переводит устройство в дежурный режим.

Принцип работы ШИМ контроллера

Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю.

В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое.

Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.

Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.

Аналоговая ШИМ

Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор).

На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой.

Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.

Цифровая ШИМ

Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения.

Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода.

Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?

Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства. Изменяя скважность импульсов, меняется среднее значение выходного напряжения.

Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки. Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления.

Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

  • высокой эффективности преобразования сигнала;
  • стабильность работы;
  • экономии энергии, потребляемой нагрузкой;
  • низкой стоимости;
  • высокой надёжности всего устройства.

Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация.

Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.

Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода.

Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период.

При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.

Пример использования ШИМ регулятора

Один из вариантов реализации ШИМ простого регулятора уже описывался ранее в этой статье. Он построен на базе микросхемы NE555 и имеет небольшую обвязку. Но, несмотря на простату схемы, регулятор имеет довольно широкую область применения: схемы управления яркости светодиодов, светодиодных лент, регулировка скорость вращения двигателей постоянного тока.

Источник: https://ledjournal.info/spravochnik/shirotno-impulsnaya-modulyaciya.html

Широтно Импульсная Модуляция (ШИМ, PWM) — DRIVE2

Все микропроцессоры работают с цифровыми сигналами, т.е. с логическим нулем (0 В), или логической единицей (5 В или 3.3 В). Поэтому микропроцессор не может сформировать на выходе промежуточное напряжение. Использование для этих целей внешних ЦАП (www.drive2.ru/b/2558751/) — сложно и задействует сразу много ножек микропроцессора, что неудобно.

В этих случаях применяют Широтно-импульсную модуляцию (ШИМ, англ. pulse-width modulation (PWM)) — процесс управления мощностью, подводимой к нагрузке, путём изменения скважности импульсов, при постоянной частоте. Широтно-импульсная модуляция представляет собой периодический импульсный сигнал.Существуют цифровые и аналоговые ШИМ.

Принцип их работы остается одинаковым вне зависимости от исполнения и заключается в сравнении двух видов сигналов:Uоп – опорное (пилообразное, треугольное) напряжение;Uупр – входное постоянное напряжение.Cигналы поступают на компаратор, где они сравниваются, а при их пересечении возникает / исчезает (или становится отрицательным) сигнал на выходе ШИМ.

Выходное напряжение Uвых ШИМ имеет вид импульсов, изменяя их длительность, мы регулируем среднее значение напряжения (Ud) на выходе ШИМ:

Скважность сигнала при однополярной ШИМ

Однополярная модуляция означает, что происходит формирование импульсов только положительной величины и имеет место нулевое значение напряжения

Скважность импульсов

Если сформированный таким образом сигнал подать на объект, обладающий фильтрующими свойствами, например, на двигатель постоянного тока или лампу накаливания, то объект будет использовать среднюю мощность сигнала.Т.е.

мощность, потребляемая объектом управления, пропорциональна скважности сигнала ШИМ, при условии, что период импульсов ШИМ на порядок меньше минимальной постоянной времени объекта.ШИМ может быть встроенным выходом микропроцессора, может быть организована отдельно на выходе микропроцессора с обычным цифровым выходом.

Преимущество использования ШИМ — это легкость изменения величины напряжения при минимальных потерях.

Параметры ШИМ

Период тактирования T определяет через какие промежутки времени подаются импульсы.

Длительность импульса — величина показівающая время в течении которого подается сигнал t, с;

Скважность — Соотношение длины импульса (τ) к периоду тактирования (T); пропорционально модулирующей величине. Коэффициент заполнения обычно отображают в процентах (%).

Коэффициент заполнения D – величина обратная скважности.Несмотря на то, что скважность и коэффициент заполнения могут использоваться в одинаковом контексте, физический смысл их отличается.

Эти величины безразмерны.

PS ШИМ может быть реализован не только при помощи микроконтроллеров, но и на аналоговой базе. Например, простейший ШИМ на основе мультивибратора из двух транзисторов:

описание его работы здесь — cxem.net/house/1-277.php
Моя версия этого регулятора — www.drive2.ru/b/456409476786815382/

Источник: https://www.drive2.ru/b/2558797/

Широтно-импульсная модуляция. Аналоговая и цифровая ШИМ

Принцип ШИМ – широтно-импульсная модуляция заключается в изменении ширины импульса при постоянстве частоты следования импульса. Амплитуда импульсов при этом неизменна.

Широтно-импульсное регулирование находит применение там, где требуется регулировать подаваемую к нагрузке мощность. Например, в схемах управления электродвигателями постоянного тока, в импульсных преобразователях, для регулирования яркости светодиодных светильников, экранов ЖК-мониторов, дисплеев в смартфонах и планшетах и т.п.

Большинство вторичных источников питания электронных устройств в настоящее время строятся на основе импульсных преобразователей, применяется широтно-импульсная модуляция и в усилителях низкой (звуковой) частоты класса D, сварочных аппаратах, устройствах зарядки автомобильных аккумуляторов, инверторах и пр. ШИМ позволяет повысить коэффициент полезного действия (КПД) вторичных источников питания в сравнении с низким КПД аналоговых устройств.

ШИМ бывает аналоговой и цифровой.

Аналоговая широтно-импульсная модуляция

Как уже упоминалось выше, частота сигнала и его амплитуда при ШИМ всегда постоянны. Один из важнейших параметров сигнала ШИМ – это коэффициент заполнения, равный отношению длительности импульса t к периоду импульса T. D = t/T.

Так, если имеем сигнал ШИМ с длительностью импульса 300 мкс и периодом импульса 1000 мкс, коэффициент заполнения составит 300/1000 = 0,3. Коэффициент заполнения также выражается в процентах, для чего коэффициент заполнения умножается на 100%.

По примеру выше процентный коэффициент заполнения составляет 0,3 х 100% = 30%.

Скважность импульса – это отношение периода импульсов к их длительности, т.е. величина, обратная коэффициенту заполнения. S = T/t.

Частота сигнала определяется как величина, обратная периоду импульса, и представляет собой количество полных импульсов за 1 секунду. Для примера выше при периоде 1000 мкс = 0,001 с, частота составляет F = 1/0,001 – 1000 (Гц).

Смысл ШИМ заключается в регулировании среднего значения напряжения путем изменения коэффициента заполнения. Среднее значение напряжения равно произведению коэффициента заполнения и амплитуды напряжения. Так, при коэффициенте заполнения 0,3 и амплитуде напряжения 12 В среднее значение напряжения составит 0,3 х 12 = 3,6 (В).

Читайте также:  Электрооборудование сверлильных станков с чпу

При изменении коэффициента заполнения в теоретически возможных пределах от 0% до 100% напряжение будет изменяться от 0 до 12 В, т.е. Широтно-импульсная модуляция позволяет регулировать напряжение в пределах от 0 до амплитуды сигнала.

Что и используется для регулирования скорости вращения электродвигателя постоянного тока или яркости свечения светильника.

Сигнал ШИМ формируется микроконтроллером или аналоговой схемой. Этот сигнал обычно управляет мощной нагрузкой, подключаемой к источнику питания через ключевую схему на биполярном или полевом транзисторе. В ключевом режиме полупроводниковый прибор либо разомкнут, либо замкнут, промежуточное состояние исключается. В обоих случаях на ключе рассеивается ничтожная тепловая мощность. Поскольку эта мощность равна произведению тока через ключ на падение напряжения на нем, а в первом случае к нулю близок ток через ключ, а во втором напряжение

В переходных состояниях на ключе присутствует значительное напряжение с прохождением значительного тока, т.е. значительна и рассеиваемая тепловая мощность. Поэтому в качестве ключа необходимо применение малоинерционных полупроводниковых приборов с быстрым временем переключения, порядка десятков наносекунд.

Если ключевая схема управляет светодиодом, то при малой частоте сигнала светодиод будет мигать в такт с изменением напряжения сигнала ШИМ. При частоте сигнала выше 50 Гц мигания сливаются вследствие инерции человеческого зрения. Общая яркость свечения светодиода начинает зависеть от коэффициента заполнения – чем ниже коэффициент заполнения, тем слабее светится светодиод.

При управлении посредством ШИМ скорости вращения двигателя постоянного тока частота ШИМ должна быть очень высокой, и лежать за пределами слышимых звуковых частот, т.е.

превышать 15-20 кГц, в противном случае двигатель будет «звучать», издавая раздражающий слух писк с частотой ШИМ. От частоты зависит и стабильность работы двигателя.

Низкочастотный сигнал ШИМ с невысоким коэффициентом заполнения приведет к нестабильной работе двигателя и даже возможной его остановке.

Тем самым, при управлении двигателем желательно повышать частоту сигнала ШИМ, но и здесь существует предел, определяемый инерционными свойствами полупроводникового ключа.

Если ключ будет переключаться с запаздываниями, схема управления начнет работать с ошибками.

Чтобы избежать потерь энергии и добиться высокого коэффициента полезного действия импульсного преобразователя, полупроводниковый ключ должен обладать высоким быстродействием и низким сопротивлением проводимости.

Сигнал с выхода ШИМ можно также усреднять посредством простейшего фильтра низких частот. Иногда можно обойтись и без этого, поскольку электродвигатель обладает определенной электрической индуктивностью и механической инерцией. Сглаживание сигналов ШИМ происходит естественным путем в том случае, когда частота ШИМ превосходит время реакции регулируемого устройства

Реализовать ШИМ можно посредством компаратора с двумя входами, на один из которых подается периодический пилообразный или треугольный сигнал от вспомогательного генератора, а на другой модулирующий сигнал управления.

Длительность положительной части импульса ШИМ определяется временем, в течение которого уровень управляющего сигнала, подаваемого на один вход компаратора, превышает уровень сигнала вспомогательного генератора, подаваемого на другой вход компаратора.

При напряжении вспомогательного генератора выше напряжения управляющего сигнала на выходе компаратора будет отрицательная часть импульса.

Коэффициент заполнения периодических прямоугольных сигналов на выходе компаратора, а тем самым и среднее напряжение регулятора, зависит от уровня модулирующего сигнала, а частота определяется частотой сигнала вспомогательного генератора.

Цифровая широтно-импульсная модуляция

Существует разновидность ШИМ, называемая цифровой ШИМ. В этом случае период сигнала заполняется прямоугольными подымпульсами, и регулируется уже количество подымпульсов в периоде, что и определяет среднюю величину сигнала за период.

В цифровой ШИМ заполняющие период подымпульсы (или «единички») могут стоять в любом месте периода. Среднее значение напряжения за период определяется только их количеством, при этом подымпульсы могут следовать один за другим и сливаться. Отдельно стоящие подымпульсы приводят к ужесточению режима работы ключа.

В качестве источника сигнала цифровой ШИМ можно использовать COM-порт компьютера с 10-битовым сигналом на выходе. С учетом 8 информационных битов и 2 битов старт/стоп, в сигнале COM-порта присутствует от 1 до 9 «единичек», что позволяет регулировать напряжение в пределах 10-90% напряжения питания с шагом в 10%.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/shirotno-impulsnaia-moduliatsiia/

Шим — широтно-импульсная модуляция

ШИМ или PWM (англ. Pulse-Width Modulation) – широтно-импульсная модуляция – это метод предназначен для контроля величины напряжения и тока. Действие ШИМ заключается в изменении ширины импульса постоянной амплитуды и постоянной частотой.

Свойства ШИМ регулирования используются в импульсных преобразователях, в схемах управления двигателями постоянного тока или яркостью свечения светодиодов.

Принцип действия ШИМ

Принцип действия ШИМ, как указывает на это само название, заключается в изменении ширины импульса сигнала. При использовании метода широтно-импульсной модуляции, частота сигнала и амплитуда остаются постоянными. Самым важным параметром сигнала ШИМ является коэффициент заполнения, который можно определить по следующей формуле:

Также можно отметить, что сумма времени высокого и низкого сигнала определяет период сигнала:

где:

  • Ton – время высокого уровня
  • Toff – время низкого уровня
  • T – период сигнала

Время высокого уровня и время низкого уровня сигнала показано на нижнем рисунке. Напряжение U1- это состояния высокого уровня сигнала, то есть его амплитуда.

На следующем рисунке представлен пример сигнала ШИМ с определенным временным интервалом высокого и низкого уровня.

Расчет коэффициента заполнения ШИМ

Расчет коэффициента заполнения ШИМ на примере:

Для расчета процентного коэффициента заполнения необходимо выполнить аналогичные вычисления, а результат умножить на 100%:

Как следует из расчета, на данном примере, сигнал (высокого уровня) характеризуется заполнением, равным 0,357 или иначе 37,5%. Коэффициент заполнения является абстрактным значением.

Важной характеристикой  широтно-импульсной модуляция может быть также частота сигнала, которая рассчитывается по формуле:

Значение T, в нашем примере, следует взять уже в секундах для того, чтобы совпали единицы в формуле. Поскольку, формула частоты имеет вид 1/сек, поэтому 800ms переведем в 0,8 сек.

Благодаря возможности регулировки ширины импульса можно изменять, например, среднее значение напряжения. На рисунке ниже показаны различные коэффициенты заполнения при сохранении той же частоты сигналов и одной и той же амплитуды.

Для вычисления среднего значения напряжения ШИМ необходимо знать коэффициент заполнения, поскольку среднее значение напряжения является произведением коэффициента заполнения и амплитуды напряжения сигнала.
Для примера, коэффициент заполнения был равен 37,5% (0,357) и амплитуда напряжения U1 = 12В даст среднее напряжение Uср:

В этом случае среднее напряжение сигнала ШИМ составляет 4,5 В.

ШИМ дает очень простую возможность понижать напряжение  в диапазоне от напряжения питания U1 и до 0. Это можно использовать, например, для регулировки яркости свечения светодиодов, или скорости вращения двигателя DC (постоянного тока), питающиеся от величины среднего напряжения.

Сигнал ШИМ может быть сформирован микроконтроллером или аналоговой схемой. Сигнал от таких схем характеризуется низким напряжением и очень малым выходным током. В случае необходимости регулирования мощных нагрузок, следует использовать систему управления, например, с помощью транзистора.

Это может быть биполярный или полевой транзистор. На следующих примерах будет использован биполярный транзистор BC547.

Пример управления светодиодом при помощи ШИМ.

Сигнал ШИМ поступает на базу транзистора VT1 через резистор R1, иначе говоря, транзистор VT1 с изменением сигнала то включается, то выключается. Это подобно ситуации, при которой транзистор можно заменить обычным выключателем, как показано ниже:

Упрощенная схема управления светодиодом.

Когда переключатель замкнут, светодиод питается через резистор R2 (ограничивающий ток) напряжением 12В. А когда переключатель разомкнут, цепь прерывается, и светодиод гаснет. Такие переключения с малой частотой в результате дадут мигающий светодиод.

Однако, если необходимо управлять интенсивностью свечения светодиодов необходимо увеличить частоту сигнала ШИМ, так, чтобы обмануть человеческий глаз. Теоретически переключения с частотой 50 Гц уже не незаметны для человеческого глаза, что в результате дает эффект уменьшения яркости свечения светодиода.

Чем меньше коэффициент заполнения, тем слабее будет светиться светодиод, поскольку во время одного периода светодиод  будет гореть меньшее время.

Такой же принцип и подобную схему можно использовать и для управления двигателем постоянного тока. В случае двигателя необходимо, однако, применять более высокую частоту переключений (выше 15-20 кГц) по двум причинам.

Первая из них касается звука, какой может издавать двигатель (неприятный писк). Частота 15-20 кГц является теоретической границей слышимости человеческого уха, поэтому частоты выше этой границы будут неслышны.

Второй вопрос касается стабильности работы двигателя. При управлении двигателем низкочастотным сигналом с малым коэффициентом заполнения, обороты двигателя будут нестабильны или может привести к его полной остановке. Поэтому, чем выше частота сигнала ШИМ, тем выше стабильность среднего выходного напряжения. Также меньше пульсаций напряжения.

Не следует, однако, слишком завышать  частоту сигнала ШИМ, так как при больших частотах транзистор может не успеть полностью открыться или закрыться, и схема управления  будет работать не правильно. Особенно это относится к полевым транзисторам, где время перезарядки может быть относительно большое, в зависимости от конструкции.

Слишком высокая частота сигнала ШИМ также вызывает увеличение потерь на транзисторе, поскольку каждое переключение вызывает потери энергии. Управляя большими токами на высоких частотах необходимо подобрать быстродействующий транзистор с низким сопротивлением проводимости.

Управляя  двигателем постоянного тока с помощью ШИМ, следует помнить о применении диода для защиты транзистор VТ1 от индукционных всплесков, появляющимся в момент выключения транзистора. Благодаря использованию диода, индукционный импульс разряжается через него и внутреннее сопротивление двигателя, защищая тем самым транзистор.

Схема системы управления скоростью вращения двигателя постоянного тока с защитным диодом.

Для сглаживания всплесков питания между клеммами двигателя, можно подключить к ним параллельно конденсатор небольшой емкости (100nF), который будет стабилизировать напряжение между последовательными переключениями транзистора. Это также снизит помехи, создаваемые частыми переключениями транзистора VT1.

Источник: http://www.joyta.ru/7532-shim-shirotno-impulsnaya-modulyaciya/

ШИМ-регулятор. Широтно-импульсная модуляция. Схема :

При работе с множеством различных технологий часто стоит вопрос: как управлять мощностью, которая доступна? Что делать, если её необходимо понизить или повысить? Ответом на эти вопросы служит ШИМ-регулятор. Что он собой представляет? Где применяется? И как самому собрать такой прибор?

Что такое широтно-импульсная модуляция?

Без выяснения значения этого термина продолжать не имеет смысла. Итак, широтно-импульсная модуляция — это процесс управления мощностью, которая подводится к нагрузке, осуществляемая путём видоизменения скважности импульсов, которая делается при постоянной частоте. Существует несколько типов широтно-импульсной модуляции:

1. Аналоговый.

2. Цифровой.

3. Двоичный (двухуровневый).

4. Троичный (трехуровневый).

Что такое ШИМ-регулятор?

Теперь, когда мы знаем, что такое широтно-импульсная модуляция, можно поговорить и о главной теме статьи. Используется ШИМ-регулятор для того, чтобы регулировать напряжение питания и для недопущения мощных инерционных нагрузок в авто- и мототехнике. Это может звучать слишком сложно и лучше всего пояснить на примере.

Допустим, необходимо сделать, чтобы лампы освещения салона меняли свою яркость не сразу, а постепенно. Это же относится к габаритным огням, автомобильным фарам или вентиляторам. Воплотить такое желание можно путём установки транзисторного регулятора напряжения (параметрический или компенсационный).

Читайте также:  Переменный ток в картинках

Но при большом токе на нём будет выделяться чрезвычайно большая мощность и потребуется установка дополнительных больших радиаторов или дополнение в виде системы принудительного охлаждения с использованием маленького вентилятора, снятого с компьютерного устройства.

Как видите, данный путь влечёт за собой много последствий, которые необходимо будет преодолеть.

Настоящим спасением из данной ситуации стал ШИМ-регулятор, который работает на мощных полевых силовых транзисторах. Они могут коммутировать большие токи (которые достигают 160 Ампер) при напряжении всего в 12-15В на затворе. Следует отметить, что сопротивление у открытого транзистора довольное мало, и благодаря этому можно заметно снизить уровень рассеиваемой мощности.

Чтобы создать свой собственный ШИМ-регулятор, понадобится схема управления, которая сможет обеспечить разность напряжения между истоком и затвором в границах 12-15В. Если этого не получится достичь, то сопротивление канала будет сильно увеличиваться и значительно возрастёт рассеиваемая мощность.

А это, в свою очередь, может привести к тому, что транзистор перегреется и выйдет из строя.

Выпускается целый ряд микросхем для ШИМ-регуляторов, которые смогут выдержать повышение входного напряжения до уровня 25-30В, при том, что питание будет всего 7-14В. Это позволит включать выходной транзистор в схеме вместе с общим стоком.

Это, в свою очередь, необходимо для подключения нагрузки с общим минусом. В качестве примеров можно привести такие образцы: L9610, L9611, U6080B … U6084B. Большинство нагрузок не потребляет ток больше 10 ампер, поэтому они не могут вызвать просадку напряжения.

И как результат – использовать можно и простые схемы без доработки в виде дополнительного узла, который будет повышать напряжение. И именно такие образцы ШИМ-регуляторов и будут рассмотрены в статье. Они могут быть построены на основе несимметрического или ждущего мультивибратора.

Стоит поговорить про ШИМ-регулятор оборотов двигателя. Об этом далее.

Схема №1

Эта схема ШИМ-регулятора собиралась на инверторах КМОП-микросхемы. Она является генератором прямоугольных импульсов, который действует на 2-х логических элементах. Благодаря диодам здесь отдельно изменяется постоянная времени разряда и заряда частотозадающего конденсатора.

Это позволяет менять скважность, которую имеют выходные импульсы, и как результат – значение эффективного напряжения, которое есть на нагрузке. В данной схеме возможно использование любых инвертирующих КМОП-элементов, а также ИЛИ-НЕ и И. В качестве примеров подойдут К176ПУ2, К561ЛН1, К561ЛА7, К561ЛЕ5.

Можно использовать и другие виды, но перед этим придётся хорошо подумать о том, как правильно сгруппировать их входы, чтобы они могли выполнять возложенный функционал. Преимущества схемы – доступность и простота элементов.

Недостатки – сложность (практически невозможность) доработки и несовершенство относительно изменения диапазона выходного напряжения.

Схема №2

Обладает лучшими характеристиками, нежели первый образец, но сложнее в выполнении. Может регулировать эффективное напряжение на нагрузке в диапазоне 0-12В, до которого изменяется с начального значения 8-12В.

Максимальный ток зависит от типа полевого транзистора и может достигать значительных значений.

Учитывая, что выходное напряжение является пропорциональным входному управляющему, данную схему можно использовать как часть системы регулирования (для поддержки уровня температуры).

Причины распространения

Чем привлекает автолюбителей ШИМ-регулятор? Следует отметить стремление к увеличению КПД, когда проводится построение вторичных источников питания для электронной аппаратуры.

Благодаря данному свойству можно данную технологию найти также при изготовлении компьютерных мониторов, дисплеев в телефонах, ноутбуках, планшетах и подобной техники, а не только в автомобилях. Также следует отметить значительную дешевизну, которой отличается данная технология при своём использовании.

Также, если решите не покупать, а собирать ШИМ-регулятор собственноручно, то можно сэкономить деньги при усовершенствовании своего собственного автомобиля.

Заключение

Что ж, вы теперь знаете, что собой представляет ШИМ-регулятор мощности, как он работает, и даже можете сами собрать подобные устройства. Поэтому, если есть желание поэкспериментировать с возможностями своего автомобиля, можно сказать по этому поводу только одно – делайте.

Причем можете не просто воспользоваться представленными здесь схемами, но и существенно доработать их при наличии соответствующих знаний и опыта. Но даже если всё не получится с первого раза, то вы сможете получить очень ценную вещь – опыт.

Кто знает, где он может в следующий раз пригодиться и насколько важным будет его наличие.

Источник: https://www.syl.ru/article/228758/new_shim-regulyator-shirotno-impulsnaya-modulyatsiya-shema

Широтно-импульсный модулятор

Широтно-импульсная модуляция состоит в изменении ширины (длительности) импульсов, следующих друг за другом с постоянной частотой. Широтно-импульсная модуляция (ШИМ, англ.

Pulse-width modulation (PWM)) — приближение желаемого сигнала (многоуровневого или непрерывного) действительным бинарным (с двумя уровнями – вкл/выкл), так что в среднем, за отрезок времени, их значения равны.

Основным регулирующим фактором выступает относительная длительность импульсов или коэффициент заполнения

,

где Т – период следования импульсов. При односторонней ШИМ, опорное напряжение представляет собой периодические пилообразные колебания. В этом случае модуляция осуществляется изменением положения только одного фронта импульса.

Для двусторонней ШИМ, требуется треугольное (желательно равностороннее) опорное напряжение. Двусторонняя ШИМ, обладает более высоким быстродействием, чем односторонняя, поэтому ее применяют чаще. Если входной сигнал – биполярный, то должны меняться полярность и среднее значение выходного напряжения.

При этом возможны два типа модуляции разнополярная ШИМ и однополярная ШИМ.

1. Формулировка задания

В данной курсовой работе разрабатывается широтно-импульсный модулятор со следующими параметрами:

Таблица 1. Содержание задания

Рассмотрим функциональную схему и принцип работы устройства.

Рисунок 1 – Функциональная схема

Генератор прямоугольных импульсов необходим для образования импульсов на следующем блоке – ГЛИНе.

Исходя из задания, определяем, что в качестве опорного напряжения должны быть «треугольники». На выходе ГЛИНа имеем треугольные импульсы, которые являются тем самым опорным напряжением, подаваемым на компаратор.

Компаратор устройство, на отрицательный вход которого подаётся опорный сигнал в виде треугольников, а на положительный − модулируемый непрерывный аналоговый сигнал.

По заданию, модулируемым сигналом является синусоида с частотой 200Гц.

Так же согласно заданию, амплитуда выходных сигналов, должна быть 10В. Нужную амплитуду обеспечивает электронный ключ.

3. Функциональные блоки

Кварцевый генератор — генератор колебаний, синтезируемых кварцевым резонатором, входящим в состав генератора. Обычно обладает небольшой выходной мощностью.

Внешнее напряжение на кварцевой пластинке вызывает её деформацию. А она, в свою очередь, приводит к появлению зарядов на поверхности кварца (пьезоэлектрический эффект). В результате этого механические колебания кварцевой пластины сопровождаются синхронными с ними колебаниями электрического заряда на её поверхности и наоборот.[1]

Для обеспечения связи резонатора с остальными элементами схемы непосредственно на кварц наносятся электроды, либо кварцевая пластинка помещается между обкладками конденсатора.

Используем Генератор Пирса. В схеме используется минимум компонентов: один цифровой инвертор, один резистор, два конденсатора и кристалл кварца, который действует как высокоизбирательный элемент фильтра.

Генератор с RC частотно-задающей цепью, принцип его работы основан на процессе зарядки-разрядки конденсатора С через резистор R. Через этот резистор осуществляется ООС по постоянному току, а через конденсатор—ПОС по переменному.

Второй инвертор в схеме генератора предназначен для уменьшения длительности фронтов формируемого прямоугольного колебания. Это необходимо для уменьшения влияния последующей схемы на стабильность колебаний задающего генератора, а также для более надёжной работы цифровых счётчиков делителя частоты.

Рисунок 2 – Блок 1. Генератор прямоугольных напряжений

Схема делителя частоты до значения нужной частоты. Для реализации делителя потребуется микросхема 561ИЕ16.

3.2 Генератор линейно изменяющегося напряжения

Этот блок представляет собой генератор треугольного напряжения. В настоящее время генераторы с малым коэффициентом нелинейности (ε

Источник: http://MirZnanii.com/a/121057/shirotno-impulsnyy-modulyator

Урок 37. Широтно-импульсная модуляция в Ардуино

В уроке узнаем о широтно-импульсной модуляции, о реализации этого способа управления в контроллерах Ардуино, о режимах и функциях работы с ШИМ в Ардуино.

Предыдущий урок     Список уроков     Следующий урок

Прервемся на урок от разработки контроллера холодильника, для того чтобы научиться работать с широтно-импульсным модулятором Ардуино.

В нашей разработке используется именно такой способ регулирования мощности на элементе Пельтье.

Широтно-импульсная модуляция.

Широтно-импульсная модуляция (ШИМ) это способ управления мощностью на нагрузке с помощью изменения скважности импульсов при постоянной амплитуде и частоте импульсов.

Можно выделить две основные области применения широтно-импульсной модуляции:

  • Во вторичных источниках питания, различных регуляторах мощности, регуляторах яркости источников света, скорости вращения коллекторных двигателей и т.п. В этих случаях применение ШИМ позволяет значительно увеличить КПД системы и упростить ее реализацию.
  • Для получения аналогового сигнала с помощью цифрового выхода микроконтроллера. Своеобразный цифро-аналоговый преобразователь (ЦАП). Очень простой в реализации, требует минимума внешних компонентов. Часто достаточно одной RC цепочки.

Принцип регулирования с помощью ШИМ – изменение ширины импульсов при постоянной амплитуде и частоте сигнала.

На диаграмме можно увидеть основные параметры ШИМ сигнала:

  • Ui – амплитуда импульсов ;
  • Ton – время активного (включенного) состояния сигнала;
  • Toff – время отключенного состояния сигнала;
  • Tpwm – время периода ШИМ.

Даже интуитивно понятно, что мощность на нагрузке пропорциональна соотношению времени включенного и отключенного состояния сигнала.

Это соотношение определяет коэффициент заполнения ШИМ:

Kw = Ton / Tpwm.

Он показывает, какую часть периода сигнал находится во включенном состоянии.  Может меняться:

  •  от 0 – сигнал всегда выключен;
  •  до 1 – сигнал все время находится во включенном состоянии.

Чаще используют процентный коэффициент заполнения. В этом случае он находится в пределах от 0 до 100%.

Среднее значение электрической мощности на нагрузке строго пропорционально коэффициенту заполнения. Когда говорят, что ШИМ равен, например, 20%, то имеют в виду именно коэффициент заполнения.

Формирование аналогового сигнала.

Если сигнал ШИМ пропустить через фильтр низких частот (ФНЧ), то на выходе фильтра мы получим аналоговый сигнал, напряжение которого пропорционально коэффициенту заполнения ШИМ.

U = Kw * Ui

В качестве ФНЧ можно использовать простейшую RC цепочку.

Из-за неидеальной характеристики такого фильтра частота среза должна быть минимум на порядок меньше частоты ШИМ. Для простого RC фильтра частота среза вычисляется по формуле:

F = 1 / (2 π R C).

  • При повышении частоты среза ФНЧ на выходе фильтра увеличиваются пульсации с частотой ШИМ.
  • При уменьшении частоты среза фильтра снижается время реакции выходного аналогового сигнала на изменения ширины импульсов.

Из этого вытекает главный недостаток широтно-импульсной модуляции. Метод способен синтезировать только достаточно медленные аналоговые сигналы или требует применения фильтров низких частот с высокой добротностью, сложных в реализации.

Я бы рекомендовал:

  • В случае, когда к быстродействию аналогового сигнала жестких требований нет выбирать заведомо заниженную частоту среза фильтра.
  • Если необходимо оптимизировать быстродействие аналогового преобразователя, то лучше промоделировать схему.

Даже простейшие моделирующие программы вычисляют уровень пульсаций достаточно точно. Вот результаты моделирования на SwCAD для ШИМ частотой 500 Гц и RC фильтрами с частотами среза 500 Гц, 50 Гц и 5 Гц. Зеленым цветом показана диаграмма ШИМ, синим – напряжение на выходе RC фильтра.

Частота среза 500 Гц (10 кОм, 32 нФ).

Частота среза 50 Гц (10 кОм, 320 нФ).

Частота среза 5 Гц (10 кОм, 3,2 мкФ).

Точность преобразования широтно-импульсных модуляторов определяется погрешностью амплитуды импульсов (т.е.

Читайте также:  Что такое удельное электрическое сопротивление

стабильностью питания микроконтроллера) и значением падения напряжения на ключах цифровых выходов микроконтроллера. Как правило, точность ШИМ микроконтроллеров невысока.

Добиться высокой точности ШИМ преобразования можно с помощью дополнительной схемы с аналоговыми ключами и источником опорного напряжения.

К недостаткам использования широтно-импульсных модуляторов в качестве ЦАП также следует отнести высокое выходное сопротивление. Оно определяется сопротивлением резистора RC фильтра и не может быть низким из-за малой нагрузочной способности выходов микроконтроллера.

Широтно-импульсные модуляторы в Ардуино.

Платы Ардуино на базе микроконтроллеров ATmega168/328 имеют 6 аппаратных широтно-импульсных модуляторов. Сигналы ШИМ могут быть сгенерированы на выводах 3, 5, 6, 9, 10, 11.

Управление аппаратными ШИМ осуществляется с помощью системной функции analogWrite().

void analogWrite(pin, val)

Функция переводит вывод в режим ШИМ и задает для него коэффициент заполнения. Перед использованием analogWrite() функцию pinMode() для установки вывода в режим “выход” вызывать необязательно.

Аргументы:

  • pin – номер вывода для генерации ШИМ сигнала.
  • val – коэффициент заполнения ШИМ. Без дополнительных установок  диапазон val от 0 до 255 и соответствует коэффициенту заполнения от 0 до 100 %. Т.е. разрядность системных ШИМ в Ардуино 8 разрядов.

analogWrite(9, 25);  // на выводе 9 ШИМ = 10%

Частота ШИМ Ардуино 488,28 Гц.

Для генерации ШИМ используются все три таймера Ардуино.

Таймер Используется для генерации ШИМ на выводах
Таймер  0 выводы 5 и 6
Таймер  1 выводы 9 и 10
Таймер  2 выводы 3 и 11

Если таймер используется для других целей, например для прерывания, то параметры ШИМ соответствующих выводов могут не соответствовать указанным выше.

Поэтому, при использовании библиотек MsTimer2, TimerOne или им подобных некоторые выводы в качестве ШИМ сигналов использовать нельзя.

Увеличение частоты и разрядности ШИМ Ардуино.

Система Ардуино устанавливает на всех выводах ШИМ параметры:

  • частота 488,28 Гц;
  • разрешение 8 разрядов (0…255).

Очень низкая частота. Для большинства приложений совершенно не допустимая.

В разработке контроллера элемента Пельтье, начатой в предыдущем уроке, частота ШИМ должна быть не менее 30-50 кГц. В интернете достаточно много предложений по увеличению частоты ШИМВо всех описываются методы увеличения частоты до 31 кГц. В принципе приемлемый вариант, но мне захотелось большего.

Я разобрался с Таймером 1 микроконтроллера ATmega168/328, перевел ШИМ в быстродействующий режим и добился частоты ШИМ Ардуино до 62,5 кГц. Заодно я научился менять разрядность ШИМ. Чтобы в следующий раз не копаться в документации на микроконтроллеры ATmega168/328 я свел всевозможные варианты ШИМ для таймера 1 в таблицу.

Строчки из правого столбца для выбранного варианта необходимо написать в функции setup().

Варианты параметров ШИМ на выводах 9 и 10 Ардуино (таймер 1).

Разрешение Частота ШИМ Команды установки режима
8 бит 62 500 Гц TCCR1A = TCCR1A & 0xe0 | 1;TCCR1B = TCCR1B & 0xe0 | 0x09;
7 812,5 Гц TCCR1A = TCCR1A & 0xe0 | 1;TCCR1B = TCCR1B & 0xe0 | 0x0a;
976,56 Гц TCCR1A = TCCR1A & 0xe0 | 1;TCCR1B = TCCR1B & 0xe0 | 0x0b;
244,14 Гц TCCR1A = TCCR1A & 0xe0 | 1;TCCR1B = TCCR1B & 0xe0 | 0x0c;
61,04 Гц TCCR1A = TCCR1A & 0xe0 | 1;TCCR1B = TCCR1B & 0xe0 | 0x0d;
9 бит 31 250 Гц TCCR1A = TCCR1A & 0xe0 | 2;TCCR1B = TCCR1B & 0xe0 | 0x09;
3 906,25 Гц TCCR1A = TCCR1A & 0xe0 | 2;TCCR1B = TCCR1B & 0xe0 | 0x0a;
488,28 Гц TCCR1A = TCCR1A & 0xe0 | 2;TCCR1B = TCCR1B & 0xe0 | 0x0b;
122,07 Гц TCCR1A = TCCR1A & 0xe0 | 2;TCCR1B = TCCR1B & 0xe0 | 0x0c;
30,52 Гц TCCR1A = TCCR1A & 0xe0 | 2;TCCR1B = TCCR1B & 0xe0 | 0x0d;
10 бит 1 5625 Гц TCCR1A = TCCR1A & 0xe0 | 3;TCCR1B = TCCR1B & 0xe0 | 0x09;
1 953,13 Гц TCCR1A = TCCR1A & 0xe0 | 3;TCCR1B = TCCR1B & 0xe0 | 0x0a;
244,14 Гц TCCR1A = TCCR1A & 0xe0 | 3;TCCR1B = TCCR1B & 0xe0 | 0x0b;
61,04 Гц TCCR1A = TCCR1A & 0xe0 | 3;TCCR1B = TCCR1B & 0xe0 | 0x0c;
15,26 Гц TCCR1A = TCCR1A & 0xe0 | 3;TCCR1B = TCCR1B & 0xe0 | 0x0d;

Следующий скетч генерирует на выводе 9 ШИМ с частотой 62,5 кГц и коэффициентом заполнения примерно 10 %.

void setup() {
  // ШИМ 8 разрядов, 62,5 кГц
  TCCR1A = TCCR1A & 0xe0 | 1;
  TCCR1B = TCCR1B & 0xe0 | 0x09; 
  analogWrite(9, 25); // на выводе 9 ШИМ=10%
}

void loop() {
}

Это максимально возможная частота ШИМ Ардуино для большинства плат (с частотой генератора 16 мГц).

В следующем уроке вернемся к разработке контроллера элемента Пельтье.

Предыдущий урок     Список уроков     Следующий урок

Источник: http://mypractic.ru/urok-37-shirotno-impulsnaya-modulyaciya-v-arduino.html

Широтно-импульсная модуляция

Большинство моделей электрического оборудования регулируемы. За счет этого достигается расширение их функциональных возможностей. Но в некоторых случаях без регулирования нормальная работа невозможна. Как, например, в газоразрядных лампах.

Они работают совместно с балластом, который также именуется пускорегулирующей аппаратурой. В результате нагрузка работает при различных напряжениях, пониженных относительно питающей электросети.

Об одной из разновидностей регулировок – ШИМ – расскажем далее.

Суть ШИМ

Аббревиатура ШИМ означает Широтно Импульсную Модуляцию. Это определение относится к электротехнике и электронике. Но физическое явление, которое лежит в основе ШИМ, существовало всегда.

Речь идет об инерционности распространения тепла в различных средах. Простейший и наглядный пример – это картофель, запеченный в костре. Горячую картофелину перебрасывают из руки в руку тем чаще, чем она горячее.

Тем самым уменьшая поток тепла от картофелины к руке и предотвращая ожог.

Ширина импульса – это значение времени. А если этот импульс характеризует изменение энергии, ее действующее значение эквивалентно площади, ограниченной линией импульса.

Например, прямоугольный импульс связан с высотой (амплитудой) и шириной (временем).

Поэтому одну и ту же площадь, а, следовательно, и количество энергии, можно получить, либо уменьшая амплитуду и увеличивая ширину импульса, либо наоборот, – увеличивая амплитуду и уменьшая время (ширину).

Способы управления электрической мощностью

Рассмотрим, в чем разница между этими двумя способами. Электрическая мощность может быть активной и определять выделяемое тепло. Также существует реактивная мощность, определяющая электромагнитные поля. В любом случае величина мощности зависит от внешнего воздействия – напряжения. Свойства нагрузки при том или ином напряжении повлияют на силу тока, а также на мощность.

Если уменьшать амплитуду напряжения на нагрузке, потребуется дополнительный элемент. Наиболее универсальным следует назвать резистор. Он создаст падение напряжения как при постоянном, так и при переменном напряжении.

Но при этом станет источником тепловых потерь. Если напряжение переменное, вместо резистора может быть использован дроссель. В таком случае потери тепла будут пренебрежимо малы. Ведь они будут только в обмотке и сердечнике.

Но сопротивление обмотки минимально, и на ней практически нет активной составляющей напряжения с вытекающими из этого потерями. Так же, как и пластинчатый сердечник минимизирует вихревые токи и выделение тепла. Однако при этом дроссель массивен и громоздок.

И главное, он работоспособен исключительно в электрической цепи с переменным напряжением. А управление таким индуктивным элементом существенно усложняет его конструкцию. При этом она получается электрически инерционной. А это свойство зачастую неприемлемо.

О шим более детально

ШИМ дает альтернативную возможность регулирования как при постоянном, так и при переменном напряжении. В любом случае элемент, реализующий его, – это аналог выключателя, который работает по специальному алгоритму.

Если нагрузка неизменна, как, например, кипятильник или лампа накаливания, зависимость частоты коммутации, именуемая скважностью импульсов, привязана к среднему значению напряжения.

Соответственна этому и мощность – как электрическая, так и тепловая.

Однако, несмотря на универсальность и прочие положительные качества, ШИМ эффективен лишь при определенных минимальных характеристиках выключателя – того, что отрабатывает упомянутую скважность импульсов напряжения непосредственно на нагрузке. Напряжение на ней при коммутации изменяется не мгновенно. При замыкании цепи оно нарастает, а при отключении спадает в течение некоторого времени.

А поскольку в этих временных интервалах напряжение и ток приложены к выключателю, на нем выделяется некоторая мощность потерь (именуемых динамическими).

Если интервалы слишком продолжительны, выделение тепла может быть опасным для работоспособности выключателя, и он получит необратимые повреждения.

По этой причине выключатели, пригодные для большинства случаев, стали доступны лишь с появлением мощных быстродействующих полупроводниковых приборов.

Разновидности

ШИМ – схемы на лампах и реле при напряжениях электросети 220 В и выше – получались либо малоэффективными, либо вообще неработоспособными.

Они могли нормально работать лишь при небольших напряжениях и токах.

Современные схемы ШИМ, благодаря быстродействию и физическим принципам работы полупроводниковых ключей, стали основой вторичных источников питания. Среди них различают аналоговые и цифровые варианты.

Но в результате получается один и тот же результат – напряжение, регулируемое в заданных пределах. Нагляднее пояснить работу ШИМ при питании нагрузки постоянным напряжением.

Например, автомобильная фара светит в полную силу при непрерывной подаче на нее напряжения аккумулятора.

Если время пребывания фары под напряжением будет равно времени отключения, то при соотношении их на уровне секунд будет видно, что лампа включилась на полную яркость и затем выключилась. И так далее.    

Если время включения и выключения оставить одинаковыми, но уменьшить периодичность коммутаций, лампа будет мигать.

Но при еще большем уменьшении периодичности коммутации яркость будет уменьшаться, а мигание становиться все менее заметным.

И, начиная с определенного значения периодичности (частоты) коммутации, человеческий глаз будет видеть ровный свет, воспринимаемый как потускневший. На самом деле так и получится, фара будет светить в пол силы.

Если при этой же периодичности время включенного состояния увеличить, а выключенного на столько же уменьшить, света станет больше. И наоборот.

Принцип ШИМ

Диммер как разновидность ШИМ

Аналогично работает ШИМ и для нагрузки при переменном напряжении. Например, в диммерах. В них используется регулятор (на изображении ниже это VR), которым устанавливается так называемое опорное напряжение.

С ним сравнивается напряжение, которое включает симистор. В зависимости от величины опорного напряжения отсекается часть полуволны напряжения, получаемого от сети 220 В.

Свет лампы в результате управляется от нуля до максимума.

Принцип работы и схема диммера

На примере диммера понятно, что пауза перед включением тиристора является следствием относительно равномерного увеличения амплитуды синусоиды сетевого напряжения.

Более сложные аналоговые и цифровые ШИМ работают со встроенным генератором пилообразного напряжения определенной частоты.

Именно он определяет нарастание напряжения, с которым сравнивается управляемое ШИМ выходное напряжение.

Схема ШИМ с обозначением генератора пилообразного напряженияПилообразное напряжение от генератора на экране осциллографа

Аналоговые схемы ШИМ работают почти как диммеры.

Разница лишь в том, что для формирования управляющих импульсов на основе пилообразного напряжения используется специальный операционный усилитель – компаратор. В цифровых ШИМ принцип работы совершенно другой.

В них управляемое напряжение сначала преобразуется определенным образом, а затем ставится в зависимость от контролируемых импульсов, которые подсчитываются.

Примером такого ШИМ могут быть устройства с популярным микроконтроллером ARDUINO. Со временем аналогичных устройств становится все больше. Они заменяют громоздкие и тяжелые трансформаторы со стальными сердечниками.

Это улучшает экономичность и материалоемкость электрооборудования. А также идет на пользу окружающей среде – уменьшается ее загрязнение.

Так что ШИМ, бесспорно, является одним из выдающихся технических решений, успех которого неразрывно связан с достижениями научно-технической революции.

Источник: https://domelectrik.ru/baza/teoriya/shim

Ссылка на основную публикацию
Adblock
detector