Лазерная сварка

Лазерная сварка

При сваривании металлической поверхности с помощью лазерной сварки весь процесс осуществляется лазерным лучом, который генерируется квантовым лазерным генератором.

В международной номенклатуре лазерная сварка обозначается следующей аббревиатурой: LWB – сварка посредством лазерного луча.

Лазерный луч по сравнении со световым пучком характеризуется следующими свойствами, которые позволяют использовать его в процессе сваривания двух металлических поверхностей:

  • направленность узкого лазерного луча позволяет сосредоточить всю тепловую энергию, которая необходима для образования сварочной ванны, в месте малой площади до десятых долей миллиметра.

Это позволяет производить соединение очень тонким швом;

  • лазер имеет более эффективную способность к фокусировке оптическими линзами, так как лазерный поток монохроматичен, имеет одну интерференционную фракцию и одинаковую длину волны, в то время, как световой поток имеет несколько фракций с различными длинами волн;
  • когерентность потока означает способность лазерного луча к резонансу, который увеличивает мощность потока.

Для этого в сварочных аппаратах лазерной сварки используются резонаторы колебаний магнитных полей, которые так же позволяют усиливать и уменьшать поток по площади.

По виду сварочные лазеры различают на твердотельные и лазеры с газовой прокачкой:

  • Твердотельные лазеры. Лазер представляет собой трубку, которая внутри покрыта зеркальной поверхностью – зеркалом насыщений.

В центре трубки находится цилиндрический трубчатый рубин, который и является преломляющей линзой для образования лазерного луча.

На внешний контр подаются токи возбуждения, которые подаются так же и на лампу возбуждения, которая создает кратковременный высокочастотные световые импульсы, эти импульсы аккумулируются рубиновой трубкой.

После этого внутри рубина возникает ионизированный лазерный пучок. Далее лазерный луч выгоняется направленным магнитным полем.

Отличительная черта таких лазеров – малая мощность лазерного луча, поэтому область применения данной сварки – работа с малогабаритными и легкоплавкими деталями.

Такие лазеры нашли активное применение в микроэлектронной промышленности: производство микросхем, микро распределителей, диодов и тиристоров;

  • Газовые лазеры обладают намного большей мощностью. Их отличительной чертой от твердотельных лазеров является тотфакт, что полость отражательной трубки заполнена смесью ионизирующего газа, как правило, СО2+N2+Не.

Источник: https://metallmaster.org/shkola-svarschika/lazernaya-svarka-princip-raboty-tekhni.html

Лазерная сварка металла

Соединение нержавеющих сталей успешно производится аргоновой сваркой или полуавтоматами. Но если требуется выполнить шов на очень тонком металле, то здесь эти аппараты менее практичны.

Передаваемая температура от электрической дуги либо расплавит тонкий материал полностью, либо деформирует поверхность изделия. В подобной ситуации лучшим вариантом является лазерная сварка металла. Она позволяет создать тонкий шов с минимальным температурным воздействием на изделие.

В чем суть этого метода? Каковы его преимущества и какими аппаратами он осуществляется?

За счет чего происходит сваривание лазером?

Лазерная сварка — это процесс расплавления кромок металла специальным лучом. Последний получается от источника света, в котором возбужденные атомы излучают фотоны — точные копии своих прототипов, не поглощая их. Разница энергии между уровнями этих атомов усиливает свет. Это явление называется индуцированное излучение.

Полученный узконаправленный поток преобразованного света отличается постоянной длинной волны и заданным колебанием векторов (поляризацией). Именно им возможно плавить кромки металлов. Такое свечение может подаваться в зону сварки импульсно, когда сила энергии достигает пика, или же постоянно, но с меньшей силой воздействия.

Для концентрации и направления луча используется специальная оптика, состоящая из прозрачных и полупрозрачных зеркал. Сварка может происходить за счет расплавления кромок материала, либо с добавлением присадочной проволоки.

В гибридных версиях сварки присадочный материал может создавать еще и электрическую дугу, плавящую кончик проволоки, которую сфокусированный пучок энергии лазера укладывает в шов. Защищает сварочную ванну инертный газ, которым в этом случае выступает гелий и его смеси с аргоном.

На видео заметны все основные элементы процесса: источник излучения, канал для подачи проволоки с боку, сопло для продувки газом.

Применение лазерной сварки

Сварка металлов лазером активно используется для соединения легированных сталей, особенно алюминия, титана и нержавейки. Сфокусированный пучок преображенного света способен расплавлять металл толщиной от 0,1 до 10 мм. Это позволяет сваривать как стандартные пластины, так и тоненькие элементы. Благодаря этому лазерные установки нашли широкое применение в электротехнике.

Способность создавать тонкие, и аккуратные швы, отразилась на использовании лазера в ремонте ювелирных украшений и оправ очков. Для этого используют настольные установки, где обозначена точка воздействия луча. Мастер подносит изделие под эту точку и включает подачу энергии. Происходит точечная сварка.

В промышленности лазер применяется в сваривании элементов автомобилей или коррозионно-устойчивых труб. Для этого выпускаю специальные крупные установки, располагаемые на кронштейнах.

Как можно заметить на некоторых видео, сварка на таких постах выполняется подводом изделия под головку лазера и включением оборудования.

Если требуется создать беспрерывный круглый шов, то используются дополнительные автоматические приспособления, вращающие изделие во время сварки.

Большинство таких аппаратов предназначено для ведения ровных линий шва. Если пластины разрезаны неровно, или специально требуется волнистое соединение, то чтобы не вести шов в ручную, применяются шаблоны, форма которых соответствует линии сварки. Головка аппарата точно повторяет заданные повороты и полностью автоматизирует процесс.

Преимущества сварки лазером

У лазерной сварки есть ряд неоспоримых преимуществ, которые выделяют ее на фоне других способов соединения путем плавления:

  • сварка путем воздействия лучом энергии на кромки металла позволяет получать очень узкий, но высокий шов, по сравнению с результатами от полуавтомата или аргоновой сварки;
  • метод обеспечивает глубокий провар, но не оставляет наплывов с обратной стороны;
  • узкое воздействие света не позволяет перегреваться всей поверхности изделия, что сохраняет целостность его форм и ровность линий;
  • работа ведется на повышенных скоростях и улучшает весь производственный процесс;
  • благодаря лазеру можно соединять такие тонкие элементы, которые неподвластны аргоновой сварке;
  • безопасность при ведении работ за счет отсутствия широкой зоны распространения тепла (возможность вести некоторые операции по сварке даже без защитных перчаток);
  • легкая обучаемость методу сваривания.

Как показано на некоторых видео, работу лазерной сваркой можно проводить за столом. Поскольку головка аппарата находится на кронштейне, то в большинстве случаев обе руки сварщика свободны, что позволяет удобнее удерживать и направлять изделие. Там, где применяется ручная сварка, рукоятка устройства довольно тонкая, что не перегружает руку рабочего.

Используемое оборудование и процесс сварки

Установки, позволяющие варить лучом усиленного света, независимо от размеров оборудования, бывают двух типов: твердотельные и с использованием газа. Их принцип работы с металлом похож, но отличаются способы преобразования света в энергию. Разнятся они и по КПД, что влияет на их применение в жизни.

Твердотельные установки

На видео можно заметить, что одни аппараты варят лазером беспрерывно, а другие импульсно. Первый вид сварки выполняется устройствами, в основе которых находится твердый стержень. Часто используют розовый рубин. При пропуске света через который ионы высвобождают свой запас энергии.

Концы стержня напыляются серебром, которое активно отражает свет. В результате такого зеркального эффекта ионы направляются по спирали, вокруг стержня. Их движение закручивается и к нему продолжают подключаться новые ионы.

Преобразованный свет с усиленной энергией проходит через ряд стекол и фокусируется линзой в пучок. Головка аппарата направляет этот луч на свариваемые поверхности. Подача лазера ведется непрерывно, что позволяет сваривать тонкие элементы.

Но для соединения более толстых деталей требуется концентрация энергии. Поэтому были изобретены другие установки.

Газовые аппараты

Для сварки лазером, где требуется глубокая проплавка, разработали альтернативный способ преобразования света. Первоначальным источником в них служит трубка с газом. С каждой стороны резервуар закрыт зеркалами.

Находящиеся внутри электроды производят разряд, который высвобождает электроны в газе. Происходит копирование фотонов с усилением энергии атомов. Линзы направляют поток света на изделие. Подача напряжения импульсом содействует максимальной концентрации энергии на выходе.

Благодаря этому возможна сварка металлов толщиной до 10 мм.

Гибридные установки

Чтобы проводить сваривание толстых деталей и изделий с зазором, требуется дополнительный присадочный материал. Для этого используют подачу проволоки, которая зажигает электрическую дугу.

Это позволяет заполнить пространство между пластинами и создать высокий сварочный шов. Ванна защищается обдувом инертного газа через закрепленное рядом с лазерной головкой сопло.

На видео заметно, что процесс осуществляется очень слажено: проволока плавится по линии соединения, а лазер формирует из нее шов.

Сварка лазерными установками выполняется на столе или подставках от аппарата, в следующей последовательности:

  • металл важно очистить от окалин, масла или воды;
  • детали необходимо подогнать в стык плотно;
  • выполняется химическое травление металла;
  • головка аппарата подносится к линии начала соединения и запускается кнопка;
  • требуется постоянное слежение за попаданием луча в зону стыка.

Сваривание усиленной и преобразованной световой энергией позволяет получать прочные и красивые швы, что особенно важно на тонких металлических изделиях. При этом обеспечивается высокая скорость работы и безопасность сварщика. Именно поэтому данный вид сварки получил широкое применение в промышленности и ремонтных мастерских.

Поделись с друзьями

Источник: https://svarkalegko.com/tehonology/lazernaya-svarka.html

Лазерная сварка металлов: сферы применения, виды, типы лазеров для сварки

При производстве многих сложных металлов ключевой частью технологического процесса является их сварка. Соединение проводится с применением разных видов нагревов. Часто в последнее время используется и лазерная сварка металлов. Как осуществляется сварка лазером и какие ее виды существуют, будет рассмотрено в статье.

Металлы посредством лазерной сварки соединяются в основном тогда, когда другие способы соединения бесполезны или проблематичны. Оборудование для лазерного соединения стоит весьма недешево, поэтому покупать его нужно, только когда вы убедитесь в том, что работу нельзя будет сделать другими методами.

Итак, сферы применения таковы:

  • производство приборов и прочих точных механизмов;
  • производство сложных изделий на основе легкоплавких металлов;
  • изготовление деталей из чугуна;
  • изготовление пластмассовых изделий.

Такая технология в промышленности стала применяться всего порядка 20 лет назад, и если есть возможность, то можно купить станки для только стационарного типа, но и ручные для сварки в домашних условиях.

Плюсы и минусы

Лазерное соединение металлов имеет свои плюсы и минусы. Что касается преимуществ, то они следующие:

  • площадь металла нагревается незначительно, что сильно сокращает его коробление во время работы;
  • лазерный луч передается по волоконной оптике, благодаря чему он попадается даже в труднодоступные места;
  • лазерное оборудование можно использовать не только для сварки металла, но и его резки;
  • оно обеспечивает высокое качество сварных швов;
  • процесс сваривания обеспечивает хорошую производительность, его легко контролировать.

Но имеет технология и свои недостатки:

  • оборудование очень дорогое;
  • сварочный аппарат обладает низким КПД;
  • оператор установки должен иметь высокую квалификацию.

Но, несмотря на недостатки, лазер — это единственный вариант для обеспечения точной сварочной операции или соединения легкоплавких материалов.

Читайте также:  Электрические цепи несинусоидального тока

Виды сварки

Лазерная сварка бывает двух видов:

  • Стыковая — в этом случае не используют присадки и флюс. Между металлами допускается минимальный стык, не больше 0,2 мм. Такое же значение является максимальным для фокусировки лазерного луча на стык. Сварку проводят посредством «кинжального» проплавления металла на всю толщину с интенсивностью лазерного излучения до 1 мВт/см2. Шов в этом случае нужно предохранять от окисления аргоном или азотом, а гелий защитит его от пробоя лазерного излучения;
  • Нахлесточная — металлические листы накладываются друг на друга, они соединяются посредством мощного излучения. Сварка проводится с локальным прижимом деталей. Максимально допустимый зазор между поверхностями металлов при работе — 0,2 мм. В случае необходимости повышения качества соединяемых деталей используется двойной шов.

Типы лазеров

При сваривании металлов применяют лазеры двух типов:

Тот или иной тип лазера подбирается в зависимости от цели использования оборудования.

Твердотельный

В данном случае активным телом выступает рубиновый стержень со стеклом и примесью неодима или же алюмо-иттриевого граната, который легирован неодимом или иттербием. Стержень располагается в осветительной камере. Чтобы возбудить атомы активного тела, применяют лампу накачки, которая создает мощные световые вспышки.

На торцах активного тела находятся два зеркала:

  • частично прозрачное;
  • отражающее.

Лазерный луч будет выходить сквозь частично прозрачное зеркало, заранее оно многократно отражается в рубиновом стержне и усиливается. Твердотельные лазеры не слишком мощны, их мощность составляет от 1 до 6 кВт.

С помощью данных лазеров свариваются только мелкие и не толстые детали, чаще всего — это объекты микроэлектроники, например, тонкие проволочные выводы с диаметром 0,01−0,1 мм на основе нихрома, золота или тантала. Допускается и точечная сварка изделий на основе фольги с диаметром точки порядка 0,5−0,9 мм. Таким же способом выполняется герметичный катодный шов на кинескопах современных телевизоров.

Катод — это трубка с длиной в 2 мм, диаметром 1,8 мм и толщиной стенки 0,04 мм. К такой трубке приваривают дно толщиной в 0,12 мм на основе хромоникелевого сплава. Такие мелкие изделия варят благодаря высокой степени фокусировки луча, а также точной дозировке энергии посредством регулирования длительности импульса в определенных рамках.

Газовый

Газовые лазеры — более мощные, активным телом в них выступает газовая смесь. Газ прокачивается из баллонов с помощью насоса посредством газоразрядной трубы.

Энергетическое возбуждение газа происходит за счет электрического разряда между электродами. По торцам газоразрядной трубы находятся зеркала.

Электроды подключают к источнику питания, а сам лазер охлаждается с помощью водяной системы.

Основной минус оборудования с продольной прокачкой газа — это его габариты. А вот лазеры с поперечной прокачкой газа более компактные. Общая мощность может составлять от 20 кВт и больше, благодаря чему можно соединять металлы с толщиной до 20 мм на большой скорости — порядка 60 м/ч.

Самые мощные конструкции — газодинамические. В них для работы применяют газы, которые нагреваются до температуры от 1000 до 3000 К. Газ в них быстро истекает через сопло Лавля, в итоге происходит адиабатическое расширение, а затем газ охлаждается в зоне резонатора.

При охлаждении возбужденные молекулы переходят на более низкий энергетический уровень, при этом испускается когерентное излучение. Накачка может происходить с применением другого лазера или прочих мощных энергетических источников.

Мощные конструкции позволяют сваривать на скорости около 200 м/ч стали толщиной в 35 мм.

Сварка с помощью лазера осуществляется в атмосферных условиях, вакуум создавать не нужно, нужно при этом защищать от воздуха расплавленный металл. Обычно используются газы, например, аргон.

Процесс характеризуется тем, что из-за высокой тепловой мощности луча на поверхности свариваемого изделия металл интенсивно испаряется.

Пары ионизируются, вследствие чего луч рассеивается и экранизируется.

Поэтому в условиях применения высокомощного оборудования в зону сварки, кроме защитного газа, также подают и плазмоподавляющий газ.

Им обычно выступает гелий, который намного легче аргона и не будет рассеивать луч. Чтобы упростить процесс нужно, использовать специальные газовые смеси, обладающие плазмоподавляющей и защитной функцией.

В таком случае горелка должна подавать газ так, чтобы он мог сдувать ионизированный пар.

Во время работы луч медленно углубляется в деталь и оттесняет жидкий металл сварочной ванны на заднюю стенку кратера. Это обеспечивает «кинжальное» проплавление при условии большой глубины и малой ширине шва.

Большая концентрация энергии в луче позволяет достичь высокой скорости работы, а также обеспечивает хороший термический цикл и высокую прочность металла шва.

Станки для сварки лазером

Для данного вида сварочных работ применяется оборудование как мобильного, так и компактного типа, также может использоваться полноразмерное оборудование для соединения крупногабаритных деталей.

Часто в промышленных целях используют такие модели станков, как:

  • ЛАТ-С — он применяется для самой лазерной сварки, а также наплавки металлов. Обладает высокой мощностью, благодаря чему можно добиться высоких показателей в плане производительности. Может быть оснащен автоматическими координатными столами, благодаря чему можно обрабатывать сложные конструкции на высокой скорости. Станок включает в себя два модуля. В первом находится источник питания и устройство для охлаждения лазера, а второй модуль — это такой подвижный каркас, где находится лазерный излучатель. Два модуля легко двигаются благодаря наличию колес в основании. Для стационарной работы со станком неподвижность обеспечивается за счет специального механического блокиратора;
  • МУЛ-1 — этот станок малогабаритный, используется для лазерной сварки и наплавки металлов. Также с его помощью можно паять золото и серебро. Варить ювелирные изделия данным станком можно легко и с соблюдением высокой точности. Часто оборудование используют для ремонта и производства ювелирных изделий. Металлические части небольшого размера можно сварить без сильного нагрева, допускается даже соединение оправ для очков. Устройство удобное тем, что для работы достаточно напряжения в 220 В. В зависимости от выбранного режима, мощность прибора составляет от 1,9 до 2, 5 кВт;
  • ЛАТ-400 — применяется для соединения крупногабаритных изделий. Система включает в себя мощный твердотелый лазер, устройство питания и охлаждения. Лазер обладает высокой мощностью и производительностью, благодаря чему даже сложные работы можно осуществлять на высокой скорости. Оборудование подключается за счет трехфазной сети в 380 В. При пиковой нагрузке мощность аппарата составляет порядка 13 кВт. Установка оснащена механизированной системой, которая приводится в движение за счет двигателя постоянного тока. Это позволяет легко передвигать лазерную головку в трех плоскостях.

Ручная лазерная сварка проводится с применением таких аппаратов:

  • WELD-WF — портативное устройство, благодаря которому можно выполнять работы даже в труднодоступных местах. Оно включает в себя манипулятор, соединяемый с волокном. Сгенерированное лазерное излучение передается по волокну. Поскольку есть наличие обратной связи, с помощью аппарата можно получить максимально качественный шов по сравнению с оборудованием, в котором нет подобных опций. Аппарат имеет мощность всего 1,5 кВт и работает от сети в 220 В. Он подходит для разных ремонтных работ, когда выполнить демонтаж сложно или требует много времени;
  • CLW120 — ручной аппарат с невысокой мощностью, который отлично подходит для работ, требующих ювелирной точности, а также точечной лазерной сварки. Кроме этого, с его помощью можно соединять цветные и черные металлы, нержавеющую сталь или же титановые сплавы. Мощность оборудования — 10 кВт, требования к сети — 220 В.

Почти все перечисленные аппараты оснащены бинокуляром, который защищает зрение от негативного воздействия лазерного луча и вместе с тем помогает в несколько раз увеличить объект обработки, чтобы работа была выполнена качественно и точно.

Источник: https://tokar.guru/svarka/lazernaya-svarka-metallov-i-ee-osobennosti.html

Лазерная сварка в Москве

Компания Лазерформ оказывает комплексные услуги по лазерной сварке изделлий из металла.

Высокопроизводительное оборудование для лазерной сварки собственного производства позволяет проводить практически любые сварочные работы, начиная от фиксации зубчатых колес на оси, и заканчевая точечной сваркой в микроэлектронике. По вопросам сотрудничества обращайтесь по указанной на сайте контактной информации.

Описание технологии лазерной сварки

Лазерная сварка – процесс получения неразъемного соединения путем сплавления примыкающих поверхностей свариваемых частей с помощью излучения лазера. Лазерная сварка относится к методам сварки плавлением, а по плотности энергии – к высококонцентрированным источникам энергии – как электронно-лучевая сварка, сжатая дуга, плазменная сварка.

Локальность лазерной обработки, концентрация теплового воздействия, высокие скорости роста и уменьшения температуры в зоне обработки, а также возможность быстрого образования сварной ванны в заданном объеме позволяют широко применять лазерное излучение для реализации сварочного процесса.

Преимущества лазерной сварки

Большой интерес к лазерной сварке обусловлен специфическими достоинствами, которые выгодно отличают ее от других методов сварки:

  • Лазерная сварка может осуществляться в любой среде и любых условиях, не требует наличия вакуума.
  • Зона термического влияния при лазерной сварке очень мала, при этом сохраняются свойства исходного материала.
  • Лазерная сварка практически не вызывает деформации обрабатываемых изделий, так как зона теплового влияния минимальна.
  • Высокая точность и производительность процесса лазерной сварки достигается при сварке любых марок сталей.
  • Лазерная сварка – один из немногих типов сварки, допускающих соединение разнородных материалов.
  • При лазерной сварке обеспечивается значительная глубина провара при небольшой ширине сварного шва.
  • Лазерная сварка не требует дополнительных расходных материалов (например, присадочных электродов или флюсов и пр.) под различные свариваемые металлы, переналадка под другие материалы определяется только параметрами лазерного излучения, которые просто и гибко настраиваются.
  • Лазерная сварка возможна по месту, без дополнительного закрепления изделий, поэтому возможна обработка изделий крупных габаритов.
  • Лазерная сварка возможна и в труднодоступных местах за счет средств доставки лазерного излучения к месту сварки.
  • Лазерная сварка является бесконтактным методом обработки, позволяя осуществлять процесс сварки в том числе через кварцевое стекло вакуумной камеры.
  • Оборудование и расходы на эксплуатацию для лазерной сварки требуют гораздо меньших капиталовложений, чем для ближайшего аналога – электронно-лучевой сварки.

Сфера применения лазерной сварки

Точечная импульсная лазерная сварка в микроэлектронике

В приборостроительной промышленности широкую популярность приобрела технология лазерной сварки точечным методом.

Зачастую лазерная сварка может использоваться для получения прочных и герметичных соединений проводников между собой или приварки их к печатной плате, к элементам микросхем, для соединения токопроводящих элементов.

В данном случае показывает высокую эффективность и качество лазерная сварка разнородных материалов: никель-бор, вольфрам-никель и др.

Методы лазерной сварки проводников имеют несомненное преимущество в виду того, что для лазерной сварки нет необходимости в подготовке поверхностей для сварки и зачистке изоляционных слоев (полиуретан, тефлон и др.). Лазерная сварка позволяет удалить изоляцию в месте воздействия непосредственно в процессе сварки.

Читайте также:  Как устроена и работает защита от короткого замыкания

 Лазерная сварка выводов обмотки якоря с коллектором

Один из примеров – лазерная сварка статора с соединением выводов обмотки якоря с коллектором электродвигателя. Для этого медные выводы должны располагаться в пазах для соединения в коллекторе. Применение технологии лазерной сварки для получения токопроводящего соединения медных выводов с коллектором выполняется без удаления изолирующего слоя.

  Фиксация зубчатых колес на оси с помощью лазерной сварки

    

 В приборостроении зачастую важна не механическая прочность изделия под силовыми нагрузками, а необходима качественная фиксация изделий друг с другом, герметичность шва, отсутствие деформаций деталей в процессе сварки.

Из-за небольших размеров изделий различные традиционные методы соединений (резьбовые, шпоночные, клепаные, посадки с натягом) не подходят для данных изделий. Другие методы сварки, дающие большой неравномерный нагрев изделий, также не подходят для данной задачи т.к. теряется аккуратного самого сварного шва.

Примеры сварных работ: сварка цилиндрических изделий по поверхности одного из них, круговая сварка по торцу, точечная прихватка деталей перед дальнейшей обработкой.

 Изготовление датчиков давления с помощью лазерной сварки

Большое распространение получила технология лазерной сварки датчиков высокого давления. Внедрение лазерной сварки позволило повысить надежность работы датчика, увеличить диапазон рабочего давления и циклическую прочность. Лазерная импульсная сварка гарантирует высокое качество сварного соединения и обеспечивает технологическую воспроизводимость сварочного процесса.

Ремонт очковых оправ

Оперативный металоремонт товаров  потребления (очковые оправы, ювелирные изделия, бижутерия и др) получил широкое распространение  в применении  лазерной технологии.

Используемое оборудование

Технология лазерной сварки успешно реализуется на следующем оборудовании:

Лазерная установка LaserMaster

Лазерная установка Alfa

Лазерная установка Alfa-Auto

Источник: http://laser-form.ru/technologies/tehwelding.html

Особенности лазерной сварки

  • 01 декабря
  • 317 просмотров
  • 33 рейтинг

В производстве очень важным процессом является сварка. Такой аппарат, где лазер используется как энергетический источник, называется лазерная сварка, которая применяется для соединения одинаковых и разнородных металлов. Это наиболее современный способ для сварки металлических частей, который в последние годы все больше привлекает к себе внимания.

Такая сварка была создана в 60-е годы ХХ века. Плюс излучения лазера — высокое скопление энергии. Это позволяет соединить различные металлы и сплавы толщиной от микрометра до одного сантиметра.

Лазерное излучение создает сварной шов таким способом: наводится в фокусирующую систему, где преобразуется в меньший пучок, поглощает, нагревает и расплавляет свариваемые материалы. Для фокусировки энергии в сварке лазером используются направляющие зеркала.

Микросварка соединяет материал толщиной до 100 мкм, мини-сварка проплавляет на глубине от 0.1 до 1 мм, макросварка способна спаять детали толщиной более 1 мм. В зависимости от положения деталей и лазерного луча, схема спайки может быть:

  • встык;
  • внахлест;
  • угловая;
  • прочие варианты.

Типы используемых лазеров

Схема гибридной лазерной сварки.

Установки для сварки лазером бывают твердотельные и газовые.

В твердотельной используется стержень из розового рубина, в котором ионы хрома нагреваются при облучении и отдают запасенную энергию.Концы рубинового основания покрывают серебром, которое имеет свойство отражать свет.

Образуются полупрозрачные и прозрачные зеркала, от которых ионы хрома отбиваются и перемещаются вокруг рубинового стержня по спирали, задействуют следующие ионы и формируют беспрерывное действие. Случается энергетический взрыв, который движется через наполовину прозрачное стекло и собирается линзой в точку сварочного аппарата.

Минус твердотельного лазера — работа только в беспрерывном режиме, а в импульсном очень низкий КПД (от 0.01 до 1%).

Если сравнивать газовый лазер и твердотельный, то у газового выше мощность и уровень КПД. Устройство такого лазера — круглая трубка, наполненная газом с обеих сторон, прижатая полупрозрачным и непрозрачным параллельными зеркалами.

В трубке находятся электроды, между ними под воздействием разряда появляются резвые электроны, которые задействуют частицы газа. Когда они возвращаются в первоначальное состояние, образуются кванты света, которые собираются и направляются в место спайки.

Огромным достоинством газовых лазеров является то, что они функционируют в обоих режимах: импульсном и беспрерывном.

Сварка сплавов большой толщины осуществляется с глубоким проплавлением, то есть формируется парогазовый канал, что весьма отличается от соединения металлов меньшей толщины. Для того чтобы при сварке не появлялись недостатки и шов был хорошего качества, подбирается необходимая мощность. Скорость 0.2-0.3 см/с обеспечивает высокую продуктивность и качественное скрепление деталей без дефектов.

Источник: https://expertsvarki.ru/tehnologii/lazernaya-svarka.html

Применение лазера для сварки

Лазерная сварка — это технология, в которой основным элементом воздействия на материалы является лазер. Главное достоинство лазера – способность концентрировать большую мощность излучения на единицу площади (1-10МВт/см2), что обеспечивает сварку различных материалов толщиной от нескольких микрон до сантиметров.

Действие лазера

Суть сварки лазером заключается в том, что излучение, проходя через фокусирующую систему, концентрируется в определенной точке. Все, что попадает в эту точку, подвергается сильнейшему термическому воздействию.

Похожие процессы происходят при разжигании огня с помощью лупы. Так как лазерное излучение монохромное и когерентное (с постоянной разностью фаз в пространстве или времени), то используя обычную оптическую линзу можно получить высокую концентрацию энергии на очень маленькой площади.

В месте концентрации луча металл быстро расплавляется. Для формирования сварного шва достаточно убрать лазер или расфокусировать его. Благодаря маленькой области термического воздействия в свариваемом материале практически отсутствуют деформации. Шов получается тонким и не требует дальнейшей обработки.

Типы сварочных аппаратов

Лазерный сварочный аппарат использует импульсное или непрерывное излучение, и может делать швы любого типа. Так как мощность излучателя рассчитана на максимальную толщину свариваемого металла, то при сварке тонких листов (0,05-1 мм) применяется расфокусировка луча.

По типу активного тела лазерное сварочное оборудование бывает с:

  • твердотельным лазером;
  • газовым;
  • газодинамическим лазером.

Частота импульсов у разных моделей разная, обычно в пределах 4-20 Гц. Скорость сварки доходит до 20 м/час.

Твердотельные лазеры

Основным элементом твердотельного прибора является стержень из рубина или стекла с неодимом, который находится в осветительной камере. Когда в камеру с определенной частотой подается свет большой мощности, то в кристалле (активном теле) происходит возбуждение атомов, что приводит к излучению света одной длины волны.

Торцы стержня из рубина представляют собой отражающие зеркала, одно из них частично прозрачное. Через него происходит выход энергии в виде лазерного излучения.

В стационарных установках кроме собственно лазера и оптической системы фокусировки луча аппарат имеет систему газовой защиты, систему перемещения головки и свариваемого изделия.

Твердотельные приборы имеют относительно небольшую мощность от 1 до 6 кВт. Они применяются в основном в микроэлектронике, приборостроении и ювелирном деле, где приходится приваривать выводы микрочипов толщиной несколько микрон, катоды кинескопов электронно-лучевых трубок или сваривать мелкие элементы на ювелирных изделиях. Используется как точечная сварка.

Газовые лазеры

В газовых лазерных устройствах для сварки активным телом является смесь углекислого газа, азота и гелия.

Газовая смесь из баллонов с помощью насоса продувается через газоразрядную трубку, где с помощью электрических разрядов происходит возбуждение газа. Газогазрядная труба имеет отражающее и прозрачное зеркало по торцам, весь процесс происходит, как в твердотельном лазере.

По сравнению с твердотельными газовые лазеры мощнее, их мощность может превышать 20 кВт. Имеют систему водяного охлаждения. Сварочные аппараты с газовым лазером могут варить толстый металл до 2 см со скоростью 1 м/мин.

Газодинамические лазеры

Газодинамические лазерные устройства самые мощные. Активным телом является окись углерода, нагретая до 3000 ⁰K и пропущенная через сопло Лаваля. На выходе из сопла происходит резкое падение давления и, соответственно, охлаждение газа.

При этом процессе молекулы окиси углерода испускают монохромное излучение. Для повышения мощности в качестве источника накачки применяются дополнительные лазеры.

Такой способ позволяет развивать мощность газодинамического лазера до 100 кВт и более, что позволяет варить металлы толщиной 35 мм со скоростью 200 м/час. Такая производительность недоступна другим видам сварки.

Лазерно-дуговая технология

Гибридная технология совмещает в себе преимущества дуговой и лазерной сварки. Когда нужно сваривать толстые листы металла с большой скоростью и минимальным подводом тепла к сварочной зоне в автоматическом режиме, то для этого потребуется оборудование с лазерно-дуговой сваркой.

За счет быстрого разогрева лазером сварочной ванны улучшается качество шва, его глубина. Это уменьшает напряжения и деформации от возникновения соединительного шва.

Кроме этого приводит к большой скорости сварки, появляется возможность провести сваривание в один проход. Нет жестких требований к соединяемым кромкам. В комбинации с дуговой сваркой обычно используется твердотельный лазер.

Особенности процесса

Благодаря возможности концентрировать огромную энергию на маленькой площади лазерная сварка титана, а также алюминия, нержавейки и других металлов не представляет трудностей.

Для лазерной сварки не требуются особые условия. Она может производиться в окружении обычной атмосферы. Как и при дуговой электросварке требуется защита деталей в точке соединения от влияния воздуха. Для этого применяют инертные газы.

Из-за высокой мощности лазерного луча металл в сварочной ванне начинает кипеть. Пары ионизируются и рассеивают луч лазера. Для борьбы с этой проблемой в зону сваривания стали направлять струю газа подавляющего плазму.

Его роль выполняет гелий, который не рассеивает луч благодаря своей легкости и прозрачности. При одновременной подаче защитного и подавляющего плазму газов струя направляется так, что сдувает плазму с рабочей зоны.

Преимущества и недостатки

Главным достоинством лазерной сварки является регулировка количества энергии в конкретной точке на очень маленькой площади. Это позволяет получать прочные и надежные соединения при работе с мелкими изделиями. Поэтому ее применяют высокоточные производства.

Лазерная сварка может использоваться удаленно от оператора. Известна установка для ремонта стальных трубопроводов находящихся на дне водоема. С помощью вращающихся зеркал лазерный луч доставляется на место назначения, где происходит сварка.

Мощные лазеры могут проваривать толстые металлы при узком шве и минимальном термическом воздействии на соседние слои. Имеют высокую степень автоматизации работ, высокую скорость сварки и отличное качество шва.

Главным недостатком лазерной сварки является высокая стоимость оборудования. Установки имеют низкий КПД (не более 2 %), соответственно высокую стоимость сварочных работ.

Меры безопасности

При работе с лазерной сваркой использование очков обязательно. В стационарных установках должны быть защитные экраны, не позволяющие оператору попасть в рабочую зону лазера. Предусматриваются системы блокировки работы лазера при нарушении рабочей зоны персоналом.

Стены помещения покрываются матовой краской имеющей минимальную отражающую способность. В автоматических системах пульты управления и контроля находятся за пределами рабочего помещения.

Источник: https://svaring.com/welding/vidy/lazernaja-svarka

Эффективность применения лазерной сварки металлов

Лазерная сварка – это процесс, при котором металл нагревается до температуры плавления лазерным лучом, подающимся посредством оптического квантового генератора (ОКГ), и представляющим собой вынужденное монохроматическое излучение. Существует общепринятое обозначение метода: LBW (Laser Beam Welding) – понятие, переводимое, как сварка лазерным лучом.

Читайте также:  Энкодеры - датчики угла поворота

Краткое описание процесса

Суть метода лазерной сварки, как термического процесса получения неразъемного соединения металлических деталей, заключается в местном расплавлении материала, который впоследствии кристаллизируется. Во время затвердевания атомы материалов устанавливают прочную химическую связь, которая соответствует типу кристаллической решетки и природе свариваемых элементов.

Энергия излучения, которая поглощается материалами в диапазоне воздействия концентрированного лазерного луча, является источником тепловой энергии, активирующей поверхности свариваемых металлов.

Применение лазерной сварки

Лазерная сварка металлов широко применяется в приборостроении и машиностроении. По глубине проплавления различают:

  • микросварку, соединяющую элементы толщиной менее 100 мкм;
  • мини сварку, проплавляющую детали толщиной от 0,1 до 1 мм;
  • макро сварка, глубина проплавления которой больше 1 мм.

В первых двух случаях, наиболее распространенных в промышленном производстве, применяется специальное оборудование – импульсные лазеры, в которых удачно сочетаются основные свойства излучения, необходимые для выполнения локального соединения.

Ключевыми моментами лазерной сварки являются:

  • мощь излучения;
  • показатель диаметра пятна фокусировки;
  • скорость перемещения обрабатываемых участков относительно луча.

Преимущества сварки лазером

  1. Очень точная дозировка энергии, благодаря которой получаются высококачественные соединения мельчайших деталей, является самым важным преимуществом лазерной сварки твердотельными лазерами.

  2. С помощью мощных газовых лазеров можно получить глубокое проплавление узкого шва, что значительно сокращает зону термического воздействия и снижает уровень сварочного напряжения и деформаций.

  3. Сварочные работы можно проводить лазером, который находится на достаточно большом расстоянии от места выполнения соединений, что считается экономически эффективным.

  4. Зеркала и оптоволокно позволяют с легкостью управлять лазерным лучом, что дает возможность выполнить сварные работы в труднодоступных и удаленных из зоны видимости местах.
  5. Существует возможность соединения нескольких конструкций. Выполняется это лучом одного лазера, расщепленным с помощью призм.

Эффективность технологии

Так как КПД преобразования световой энергии в лазерное излучение достаточно низок, то технология сварки построена в основном на соединении поверхностей до 1 мм толщиной. Основными элементами стандартной типовой установки являются генератор накачки и активная среда.

Основываясь на этом, проводится разделение лазера на несколько видов:

  • полупроводниковый;
  • твердотельный;
  • газовый.

Средой активности для твердотельного лазера является стержень из розового рубина. Благодаря своей выходной мощи луч концентрирует в фокусе огромную энергию, а температура достигает 1000000 градусов. Недостатком устройства является низкий КПД, менее 2% при работе в импульсном режиме. Лазеры, работающие в непрерывном режиме, обладают более высоким КПД и мощью.

Среда активности для газового лазера – это углеродистые газы или газовые смеси. Генератором накачки обычно является искровой разрядник, либо электронные лучи. Их преимуществом считают КПД и мощь, которые выше твердотельного. Газовый лазер функционирует в непрерывном и импульсном режимах.

Например, лазерно-дуговая сварки имеет хорошую перспективу, как процесс, в котором итоговый показатель проплавления оказался намного выше, чем результаты каждого отдельного источника: дуги и лазера.

Особенности свариваемых металлов: нюансы и рекомендации

Лазерная сварка некоторых металлов имеет свои особенности, о которых необходимо знать новичкам.

  1. Нержавеющая сталь: высокая скорость кристаллизации металла сварного шва, а также ОШЗ при предельных температурах. Рекомендуется: лазерная сварка высокой производительности на максимальных скоростях.
  2. Алюминий: в связи с высокой теплопроводностью металла, требуется максимальное количество энергии. Рекомендуется: тщательная подготовка поверхности перед началом сварки, удаление загрязнений, механическая обработка кромок деталей.
  3. Алюминиевые сплавы: требуется дополнительная защита швов от окисления. Рекомендуется: газовая защита.
  4. Титан: рост зерна при экстремальных температурах, появление холодных трещин. Рекомендуется: источник нагрева – луч лазера, очищение и механическая обработка свариваемых поверхностей, подгонка деталей.

Лазерная сварка, являясь дорогостоящим методом, считается наиболее эффективной тогда, когда традиционные сварочные технологии не дают нужного результата или их проведение технически невозможно.

Источник: http://stroitel5.ru/ehffektivnost-primeneniya-lazernojj-svarki-metallov.html

Лазерная сварка

При лазерной сварке нагрев и плавление металла осуществляется лазерным лучом оптического квантового генератора (ОКГ).

LBW – Laser Beam Welding – сварка лазерным лучом

Сущность лазерной сварки

Лазерный луч по сравнению с обычным световым лучом обладает рядом свойств – направленностью, монохроматичностью и когерентностью.

Благодаря направленности лазерного луча его энергия концентрируется на сравнительно небольшом участке. Например, направленность лазерного луча может в несколько тысяч раз превышать направленность луча прожектора.

Если обычный «белый» свет состоит из лучей с различными частотами, то лазерный луч является монохроматичным – имеет определенную частоту и длину волны. За счет этого он отлично фокусируется оптическими линзами, поскольку угол преломления луча в линзе постоянен.

Когерентность – это согласованное протекание во времени нескольких волновых процессов. Некогерентные колебания светового луча обладают различными фазами, в результате чего могут погасить друг друга. Когерентные же колебания вызывают резонанс, который усиливает мощность излучения.

Благодаря вышеперечисленным свойствам лазерный луч может быть сфокусирован на очень маленькую поверхность металла и создать на на ней плотность энергии порядка 108 Вт/см2 – достаточную для плавления металла и, следовательно, сварки.

Для лазерной сварки обычно используются следующие типы лазеров:

  • твердотельные и
  • газовые – с продольной или поперечной прокачкой газа, газодинамические.

Лазерная сварка твердотельным лазером

Схема твердотельного лазера приведена на рисунке ниже. В качестве активного тела используется стержень из рубина, стекла с примесью неодима (Nd-Glass) или алюмо-иттриевого граната, легированного неодимом (Nd-YAG) либо иттербием (Yb-YAG). Он размещается в осветительной камере. Для возбуждения атомов активного тела используется лампа накачки, создающая мощные вспышки света.

Рисунок. Схема твердотельного лазера

По торцам активного тела размещены зеркала – отражающее и частично прозрачное. Луч лазера выходит через частично прозрачное зеркало, предварительно многократно отражаясь внутри рубинового стержня и таким образом усиливаясь. Мощность твердотельных лазеров относительно невелика и обычно не превышает 1–6 кВт.

Твердотельными лазерами в связи с их небольшой мощностью свариваются только мелкие детали небольшой толщины, обычно объекты микроэлектроники.

Например, привариваются тончайшие выводы из проволок диаметром 0,01–0,1 мм, изготовленные из тантала, золота, нихрома. Возможна точечная сварка изделий из фольги с диаметром точки 0,5–0,9 мм.

Лазерной сваркой выполняется герметичный шов катодов кинескопов современных телевизоров.

Катод представляет собой трубку длиной 2 мм, диаметром 1,8 мм, толщиной стенки 0,04 мм. К трубке приваривается донышко толщиной 0,12 мм, материал изделия – хромоникелевый сплав. Сварка таких мелких деталей возможна за счет высокой степени фокусировки луча и точной дозировки энергии путем регулировки длительности импульса в пределах 10-2–10-7 с.

Сварка газовым лазером

Более мощными являются газовые лазеры, в которых в качестве активного тела используют смесь газов, обычно СО2+N2+Не. Схема газового лазера с продольной прокачкой газа приведена на рисунке ниже.

Газ из баллонов прокачивается насосом через газоразрядную трубку. Для энергетического возбуждения газа используется электрический разряд между электродами. По торцам газоразрядной трубки расположены зеркала.

Электроды подключены к источнику питания. Лазер охлаждается водяной системой.

Рисунок. Газовый лазер с продольной прокачкой газа

Недостатком лазеров с продольной прокачкой газа являются их большие габаритные размеры.

Более компактны лазеры с поперечной прокачкой газа (см. рисунок ниже).

Рисунок. Газовый лазер с поперечной прокачкой газа

Они позволяют достичь общей мощности 20 кВт и больше, что дает возможность сваривать металлы толщиной до 20 мм с достаточно высокой скоростью, около 60 м/ч.

Наиболее мощными являются газодинамические лазеры (на рисунке ниже). Для работы используются газы, нагретые до температуры 1000–3000 К. Газ истекает со сверхзвуковой скоростью через сопло Лаваля, в результате чего происходит его адиабатическое расширение и охлаждение в зоне резонатора.

При охлаждении возбужденных молекул CO2 происходит переход их на более низкий энергетический уровень с испусканием когерентного излучения. Для накачки может использоваться другой лазер или другие мощные источники энергии.

Такой лазер мощностью N = 100 кВт позволяет, например, сваривать сталь толщиной 35 мм с очень высокой скоростью, около 200 м/ч.

Рисунок. Газодинамический лазер

Схема процесса лазерной сварки приведена на рисунке ниже.

Рисунок. Схема процесса лазерной сварки

Лазерная сварка производится в атмосферных условиях, без создания вакуума, необходима защита расплавленного металла от воздуха. Обычно для защиты используются газы, в частности аргон.

Особенностью процесса лазерной сварки является то, что вследствие высокой тепловой мощности луча на поверхности свариваемого изделия происходит интенсивное испарение металла. Пары ионизируются, что приводит к рассеиванию и экранированию луча лазера.

В связи с этим при использовании лазеров большой мощности в зону сварки необходимо подавать, кроме защитного, так называемый плазмоподавляющий газ. В качестве плазмоподавляющего газа обычно используют гелий, который значительно легче аргона и не рассеивает луч лазера.

Для упрощения процесса целесообразно применение смесей 50% Аг + 50% Не, которые выполняют плазмоподавляющую и защитную функции. В этом случае сварочная горелка должна обеспечивать подачу газа таким образом, чтобы он сдувал ионизированный пар.

Рисунок. Конструкции сопел горелок для лазерной сварки

При лазерной сварке луч постепенно углубляется в деталь, оттесняя жидкий металл сварочной ванны на заднюю стенку кратера. Это позволяет получить «кинжальное» проплавление при большой глубине и малой ширине шва.

Высокая концентрация энергии в лазерном луче позволяет достигать высоких скоростей сварки, обеспечивая одновременно благоприятный термический цикл и высокую технологическую прочность металла шва.

Преимущества лазерной сварки

Важнейшим преимуществом лазерной сварки твердотельными лазерами является возможность очень точной дозировки энергии, поэтому удается обеспечить получение качественных соединений при изготовлении очень мелких деталей.

Для мощных газовых лазеров преимуществом является получение большой глубины проплавления при малой ширине шва. Это позволяет уменьшить зону термического влияния, сократить сварочные деформации и напряжения.

Кроме того, лазерная сварка обладает рядом преимуществ, не присущих другим способам сварки. Лазер может быть расположен на достаточно большом удалении от места сварки, что в ряде случаев дает существенный экономический эффект.

Например, известна установка для лазерной сварки при ремонте трубопроводов, проложенных по дну водоема. Внутри трубы перемещается тележка с вращающимся зеркалом. Лазер же находится у конца секции трубопровода и посылает луч внутри трубы.

Это позволяет осуществлять лазерную сварку, не снимая с трубопровода балласт и не поднимая его на поверхность.

Легкость управления лазерным лучом с помощью зеркал и волоконной оптики позволяет осуществлять сварку в труднодоступных, иногда не находящихся в пределах прямой видимости местах. Возможна также лазерная сварка нескольких деталей от одного лазера расщепленным с помощью призм лучом.

Недостатки технологии

Недостатками лазерной сварки являются высокая сложность и стоимость оборудования, низкий КПД лазеров. По мере развития лазерной техники эти недостатки устраняются.

Источник: https://www.rudetrans.ru/o-svarke/lazernaya-svarka/

Ссылка на основную публикацию