Источники гармоник в электрических сетях

Гармоники в электрических сетях, причины, влияние, методы борьбы

Наличие гармонических колебаний в электросети – это результат искажения Наличие гармонических колебаний в электросети – это результат искажения частоты тока или напряжения питания, которое может быть вызвано характером нагрузки или самим источником питания.

Причины искажения: постоянные и непостоянные нелинейные нагрузки (работа выпрямителей, преобразователей частоты, трансформаторов разовое включение большого потребителя, например сварочного автомата или станка), цикличные нагрузки (крупный потребитель подключается в определенное время суток к сети), пиковые нагрузки при массовом потреблении электроэнергии. Часто причиной возникновения гармонических колебаний по напряжению является изношенность оборудования в энергогенерирующей отрасли и распределительных сетях (в основном, это старые ТП и сети с малым пределом потребления).

Источники гармонических токов:

— двигатели с плавным пуском, управляющие устройства (преобразователи частоты), блоки питания;

— печи (дуговые, индукционные), сварочные аппараты;

— энергосберегающие лампы (люминесцентные, дуговые, газоразрядные);

— современная бытовая и офисная техника.

Критическим для сети переменного тока считается оборудование, способное вызывать гармоники, соответствующее 20% потребления по мощности. В таких случаях необходимо применять меры по устранению токовых искажений.

Последствия гармоник и защита

По сути, гармоники – это токи-паразиты, которые оборудование не может потребить или потребляет частично с негативным эффектом.

В электродвигателях они являются причиной вибраций, в различных сетях приводят к перегреву, а если гармоника ниже чем номинальный синусоидальный ток необходимый для работы электротехники, то в сервоприводах, автоматических выключателях и другом оборудовании они могут вызывать ложные срабатывания.

Большая проблема – преждевременное старение электроизоляции в сетях с обилием гармоник. Гармоники, превышающие частоту номинального тока, вызывают нагрев проводников, при этом в изоляционных материалах начинаются термохимические процессы, меняющие их свойства. Следствием данных процессов являются пробои изоляции.

Для защиты от гармоник в устройстве используются различные схемы. Основные:

— использование резистора, способного поглотить данный ток и перевести его в тепловую энергию;

— применение конденсаторов (выполняют роль компенсатора реактивной мощности);

— применение фильтров гармоник.

Для контроля сети используются современные анализаторы качества электроэнергии, способные контролировать от 10 параметров тока (уровни искажений в том числе) и выше с возможностью вывода информации на ПК.

Подробнее о гармониках можно указать из следующего видео:

Негативные последствия гармонических токов:

— перегрузка в распределительных сетях;

— перегрузка в нейтралях;

— перегрузка трансформаторов, генераторов, двигателей, что вызывает преждевременное старение оборудования;

— шум, вибрации, как следствие – механические разрушения неправильно работающих электроприводов;

— снижение надежности электронной части, повышение вероятности выхода ее из строя;

— помехи в линиях связи, коммуникационном оборудовании, записывающих устройствах.

Экономические последствия гармонических токов:

— внеплановые ремонт или замена оборудования;

— увеличение расхода электроэнергии за счет потерь;

— останови техпроцесса из-за ложных срабатываний автоматических выключателей;

— убытки, нанесенные в результате КЗ (остановка производства, ремонт, ликвидация пожара).

Источник: http://pue8.ru/elektrotekhnik/929-garmoniki-v-elektricheskikh-setyakh-prichiny-vliyanie-metody-borby.html

Что такое гармоники в электрических сетях

В идеальном случае в электрической сети должно быть переменное напряжение, которое изменяется по синусоидальному закону с частотой 50 Гц (50 раз в секунду), если речь идет об отечественных сетях.

На практике дело обстоит иначе – напряжение далеко от синусоидальной формы, оно искажено, не только по фронтам, но и по всей длине наполнено различными всплесками и помехами. Данное явление называется гармоники в электрических сетях.

В этой статье мы подробнее рассмотрим, что это такое и чем опасны гармоники для оборудования, подключенного к сети.

Определение гармоник

График сигнала, который изменяется по синусоидальному закону, имеет вид:

Но это значительно отличается от реальной формы напряжения в электрической сети:

Эти зазубрины и всплески и вызваны гармониками. Мы попытаемся рассказать об этом явлении простыми словами. Изображенный выше график можно представить как сумму сигналов различной частоты и величины. Если всё это сложить, то в результате получится именно такой сигнал. Пример и результат сложения сигналов изображен на графике ниже:

Гармоники различают по номерам, где первая гармоника — это та составляющая, у которой самая большая величина. Однако такое описание слишком кратко. Поэтому давайте приведем формулу определения величины гармоники. Это возможно при гармоническом анализе и разложении в ряд Фурье:

Из этой формулы можно выделить и величины частот и фаз гармонических составляющих электрической сети и любого другого синусоидального сигнала.

Источники помех

К источникам помех можно отнести целый ряд оборудования, начиная от бытовых приборов, заканчивая мощными промышленными электрическими машинами. Для начала давайте кратко рассмотрим причины их возникновения.

Гармоники в электрической сети переменного тока возникают из-за особенностей электрооборудования, например из-за нелинейности их характеристик, или характера потребления тока.

Например, в трёхфазных сетях в магнитопроводах трансформаторов длины магнитных путей средних и крайних фаз различаются почти в 2 раза, поэтому и токи их намагничивания различаются до полутора раз. Отсюда возникают гармоники в трёхфазных сетях.

Другой источник помех в электротехнике — это электродвигатели, как трёхфазные синхронные и асинхронные, так и однофазные, в том числе и универсальные коллекторные двигатели. Последний тип двигателей используется в большей части бытовой техники, например:

  • стиральные машины;
  • кухонные комбайны;
  • дрели, болгарки, перфораторы и пр.

В результате работы импульсных блоков питания возникают высокочастотные гармоники (помехи) в электрической сети. Чтобы понять как они образуются, нужно иметь сведения об их внутреннем устройстве.

Это связано с тем, что ток первичной обмотки ИБП отличается от непрерывного, он протекает только тогда, когда открыт силовой полупроводниковый ключ.

А последний открывается и закрывается с частотой выше 20 кГц.

Интересно: Рабочая частота некоторых современных импульсных блоков питания достигает 150 кГц.

Для уменьшения этих гармоник используют фильтры электромагнитных помех, например, синфазный дроссель и конденсаторы. Для улучшения графика потребления тока относительно питающего однофазного напряжения используют активные корректоры коэффициента мощности (рус. ККМ, англ. PFC).

Такие блоки питания установлены в:

  • светодиодных лампах;
  • ЭПРА для люминесцентных ламп;
  • компьютерные блоки питания;
  • современные зарядные устройства для мобильных телефонов;
  • телевизоры и прочая техника.

Также к этим источникам питания можно отнести и преобразователи частоты.

Последствия гармонических помех

Наличие гармоник в электрической сети переменного тока вызывает определенные проблемы. Среди них – повышенный нагрев электродвигателей и питающих проводов. Последствия влияния гармоник – это вибрация двигателей. Дальнейшие последствия могут быть различными – начиная от ускоренного износа подшипников ротора двигателя, заканчивая пробоем на корпус обмоток от повышенного нагрева.

В электрике встречаются ложные срабатывания коммутационной и защитной аппаратуры – автоматических выключателей, контакторов и магнитных пускателей. В звуковой аппаратуре и технике для связи из-за гармоник возникают помехи. С ними борются аналогично – установкой фильтров электромагнитных помех.

На видео ниже рассказывается, что такое гармоники и интергармоники в электросети:

В заключение хотелось бы отметить, что гармоники в электрических сетях в принципе не несут никакой пользы. Они лишь вызывают неисправности, ложные срабатывания коммутационной аппаратуры и прочие проявления нестабильности в работе. Это может нести не только неудобства в эксплуатации, но и экономические проблемы, убытки и аварийные ситуации, которые могут быть опасны для жизни.

Материалы по теме:

Источник: https://samelectrik.ru/chto-takoe-garmoniki-v-elektricheskix-setyax.html

Негативное воздействие токов высших гармоник на элементы системы электроснабжения

Коваленко Д. В., Плотников Д. И., Шакенов Е. Е., Кулинич И. О. Негативное воздействие токов высших гармоник на элементы системы электроснабжения // Молодой ученый. — 2016. — №28. — С. 102-105. — URL https://moluch.ru/archive/132/36981/ (дата обращения: 07.11.2018).



В идеальной электроэнергетической системе (ЭЭС) энергия должна передаваться при неизменных во времени номинальных значениях частоты и напряжения. В реальных энергосистемах эти условия не выполняются, т. к. большинство потребителей электроэнергии имеют нелинейный характер нагрузки.

Отклонения кривых тока и напряжения от синусоидальной формы обычно представляют с помощью гармонических составляющих.

Гармоники можно разделить на следующие группы: основная — гармоника сетевой частоты (в России — 50 Гц) [1]; высшие гармоники — они превышают частоту основной в n раз, т. е. 3n, 5n и т.д.; субгармоники — они меньше частоты основной в n раз, т. е. n/3, n/5; интергармоники — составляющие колебаний, которые не кратны основной частоте сети.

Следует различать гармоники в установившихся (стационарных) режимах, когда форма кривой не изменяется, и гармоники в переходных (нестационарных) режимах, когда форма кривой существенно меняется от цикла к циклу.

Важной характеристикой, определяющей форму кривой, является угол сдвига фаз гармоники по отношению к гармонике основной частоты.

Одни и те же гармоники от различных источников могут производить различный эффект в зависимости от их относительного положения. В свою очередь, эффекты, вызываемые гармониками, можно разделить на эффекты от кратковременного и от длительного воздействия.

Эффекты кратковременного воздействия:

– Искажение формы питающего напряжения;

– Эффект гармоник, кратных трем (в трехфазных сетях);

– Падение напряжения в распределительной сети;

– Резонансные явления на частотах высших гармоник;

– Наводки в телекоммуникационных и управляющих сетях;

– Повышенный акустический шум в электромагнитном оборудовании;

– Вибрация в электромашинных системах.

Эффекты длительного воздействия:

– Нагрев и дополнительные потери в электрических машинах;

– Дополнительные потери в шинопроводах;

– Нагрев конденсаторов, входящих в состав батарей (БСК);

– Нагрев кабелей распределительной сети.

Таким образом, можно сделать вывод, что основными формами воздействия высших гармоник на системы электроснабжения являются: увеличение напряжений и токов в СЭС вследствие возникновения резонансов на частотах гармоник; снижение эффективности процессов генерации, передачи, распределения, преобразования и потребления электроэнергии; старение изоляции электрооборудования, что влечет за собой повышенный износ и сокращение срока службы; ложные срабатывания устройств релейной защиты и автоматики.

Для иллюстрации одного из негативных влияний высших гармоник, а именно искажения формы кривой напряжения, рассмотрим следующий пример.

В качестве исходных данных и упрощения теоретических выкладок рассмотрим систему электроснабжения, изображенную на рис.1, потребители которой (S1 и Sнн) получают питание от генератора через трансформатор по кабельной линии.

Отметим, что потребитель S1 является спокойной (линейной) нагрузкой, а потребитель Sнн — нелинейная нагрузка (12-пульсный выпрямитель).

Читайте также:  Энкодеры - датчики угла поворота

Рис. 1. схема СЭС

Для создания имитационной модели составляются схемы замещения СЭС на основной частоте (рисунок 2а) и на частотах высших гармоник (ВГ) (рисунок 2б) [3].

Рис. 2. Схема замещения СЭС рис.1 на основной (а) и высших (б) гармониках

При составлении схемы замещения на основной гармонике (50 Гц) принимаются следующие допущения, позволяющие упростить решение задачи.

Генератор и понижающий трансформатор представляется источником ЭДС напряжением 0,38 кВ и комплексным сопротивлением источника Zи, равным 106 Ом. Линейная и нелинейная нагрузки представляются комплексными сопротивлениями.

Модуль комплексного сопротивления линейной нагрузки составляет Z1=24768 Ом, а нелинейной — зависит от частоты (т. е. оно различно для каждой из гармоник).

Схема замещения на высших гармониках представляет собой источник тока, комплексные сопротивления всех нагрузок и внутренне сопротивление источника тока (причем схем замещения существует столько, сколько у нас гармоник в сети; покажем для краткости одну из них, так как остальные схемы замещения аналогичны рассматриваемой, отличаются они только параметрами). Частота источника тока равна произведению основной частоты на номер соответствующей гармоники сети, т. е. I11=11·50=550 Гц, I13=13·50=650 Гц и т.д. для каждой гармоники. Величины сопротивлений также зависят от номеров гармоник.

Для наглядного представления искажения синусоидальности кривой напряжения в программном комплексе MATLAB-Simulink была собрана имитационная модель рассматриваемой СЭС, показанная на рис.3 [4].

Рис. 3. Имитационная модель СЭС, представленной на рис. 1

На рис.4 представлена осциллограмма трехфазного напряжения на источнике. Можно сделать вывод, что форма питающего напряжения имеет синусоидальный характер, искажения отсутствуют (причем это справедливо для всех трех фаз).

Рис. 4. Форма питающего напряжения СЭС

В точке подключения нелинейной нагрузки к системе форма напряжения существенно изменяет свой характер из-за того, что происходит наложение высших гармоник на синусоидальное напряжение источника. Происходит искажение формы кривой напряжения в системе, что и показывает нам рис.5.

Рис. 5. Наложение высших гармоник на основную синусоиду источника

Источниками гармоник в СЭС являются: силовое электронное оборудование, статические преобразователи частоты, выпрямительные установки, дуговые сталеплавильные и индукционные печи, частотно-регулируемые электроприводы, циклоконверторы, сварочные установки, газоразрядные осветительные приборы, различная бытовая техника и т.д. В нашем случае источником высших гармоник в СЭС оказался двенадцатипульсный выпрямитель [2].

Негативное влияние высших гармоник на электрооборудование и другие элементы СЭС заключается в следующем:

1) возникает ускоренный износ электрических машин вследствие ускоренного износа изоляции обмоток и сердечника, который происходит из-за её чрезмерного нагрева токами высших гармоник;

2) возникают дополнительные потери и уменьшение пропускной способности линий электропередачи;

3) затрудняется компенсация реактивной мощности с помощью батарей статических конденсаторов (БСК) вследствие возможности возникновения резонансных явлений на высших гармониках;

4) ухудшается работа устройств автоматики, телемеханики и связи.

Таким образом, можно сказать, что высшие гармоники напряжений и токов являются негативным фактором, влияющим на энергосистему в целом.

Литература:

  1. ГОСТ 32144-2013. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. — Введ. 2014–07–01. — М.: Стандартинформ, 2013. — 62 с.
  2. Куско А., Томпсон М. Качество энергии в электрических сетях / А. Куско, М. Томпсон: пер. с англ. Рабодзея А. Н. — М.: Издательский дом «Додэка — XXI», 2008. — 333 с.
  3. Осипов Д. С., Коваленко Д. В., Киселев Б. Ю. Расчет потерь энергии в кабельной линии электропередачи при наличии нелинейной нагрузки методом пакетного вейвлет-преобразования / Д. С. Осипов, Д. В. Коваленко, Б. Ю. Киселев // Омский научный вестник. Сер. Приборы, машины и технологии. — 2016. — № 4(148). — С. 84-89.
  4. Черных И.В. Моделирование электротехнических устройств в MATLAB, SimPowerSystems и Simulink/ И.В. Черных — М.: «ДМК Пресс», 2008. — 286 с.

Основные термины (генерируются автоматически): гармоника, схема замещения, питающее напряжение, основная частота, нелинейная нагрузка, имитационная модель, форма кривой, искажение формы кривой напряжения, распределительная сеть, длительное воздействие.

1. Искажение формы питающего напряжения. 2. Падение напряжения в распределительной сети. 3. Эффект гармоник, кратных трем.

Собрав имитационную модель узла нагрузки системы электроснабжения в Matlab и Simulink.

Анализ симметрии напряжения в распределительных электрических сетях напряжением 0,38 КВ.

U1(1)i — действующее значение напряжения прямой последовательности основной частоты трехфазной системы напряжений в i — м наблюдении В, кВ.

– коэффициентом искажения синусоидальности кривой напряжения, являющимся количественной оценкой отклонения напряжения от формы синусоиды. Он характеризуется формулой [3]

Искажения формы синусоиды напряжений и токов ведет к возрастанию потерь, быстрому старению изоляции, а, следовательно, и уменьшению срока службы

Схема данного устройства представлена на рисунке 1. Рис. 1. Однофазная схема замещения АФГ.

Основные термины (генерируются автоматически): гармоника, нелинейная нагрузка, гармоника тока, емкость, упрощенная схема замещения фильтра, Амплитудное значение тока, электрическая энергия, реактивная мощность, имитационная модель, MATLAB.

Основные термины (генерируются автоматически): кабельная линия, статический преобразователь частоты, интергармоника, потеря мощности, питающая сеть, гармоника, основная частота, доля потерь, частота, нелинейная нагрузка.

Коэффициент искажения синусоидальности кривой напряжения в сетях с электродуговыми печами определяется в основном 2, 3, 4, 5, 7-й гармониками.

В этом случае исследуются воздействия несимметрии напряжения на трехфазный двигатель с треугольной схемой соединения.

Методы измерения наведенного напряжения в сетях 0,38/10 кВ МУП «Рязанские городские распределительные электрические сети».

Основные термины (генерируются автоматически): изолированная нейтраль, земля, напряжение, сеть, ток, поврежденная фаза, фаза А, схема замещения сети, воздушная линия, индуктивный ток.

Имитационная модель одновибратора с перезапуском.

1. Искажение формы питающего напряжения. 2. Падение напряжения в распределительной сети. 3. Эффект гармоник, кратных трем.

Собрав имитационную модель узла нагрузки системы электроснабжения в Matlab и Simulink.

Анализ симметрии напряжения в распределительных электрических сетях напряжением 0,38 КВ.

U1(1)i — действующее значение напряжения прямой последовательности основной частоты трехфазной системы напряжений в i — м наблюдении В, кВ.

– коэффициентом искажения синусоидальности кривой напряжения, являющимся количественной оценкой отклонения напряжения от формы синусоиды. Он характеризуется формулой [3]

Искажения формы синусоиды напряжений и токов ведет к возрастанию потерь, быстрому старению изоляции, а, следовательно, и уменьшению срока службы

Схема данного устройства представлена на рисунке 1. Рис. 1. Однофазная схема замещения АФГ.

Основные термины (генерируются автоматически): гармоника, нелинейная нагрузка, гармоника тока, емкость, упрощенная схема замещения фильтра, Амплитудное значение тока, электрическая энергия, реактивная мощность, имитационная модель, MATLAB.

Основные термины (генерируются автоматически): кабельная линия, статический преобразователь частоты, интергармоника, потеря мощности, питающая сеть, гармоника, основная частота, доля потерь, частота, нелинейная нагрузка.

Коэффициент искажения синусоидальности кривой напряжения в сетях с электродуговыми печами определяется в основном 2, 3, 4, 5, 7-й гармониками.

В этом случае исследуются воздействия несимметрии напряжения на трехфазный двигатель с треугольной схемой соединения.

Методы измерения наведенного напряжения в сетях 0,38/10 кВ МУП «Рязанские городские распределительные электрические сети».

Основные термины (генерируются автоматически): изолированная нейтраль, земля, напряжение, сеть, ток, поврежденная фаза, фаза А, схема замещения сети, воздушная линия, индуктивный ток.

Имитационная модель одновибратора с перезапуском.

Источник: https://moluch.ru/archive/132/36981/

Способ выявления источника высших гармоник

Изобретение относится к электротехнике и электроэнергетике, а именно к способам оценки качества электроэнергии. Способ может быть использован в системах электроснабжения промышленных предприятий с неизменной нагрузкой для определения источника нелинейных искажений как со стороны питающей сети, так и со стороны нелинейной нагрузки самого предприятия.

Известен способ учета расхода активной электрической энергии (патент WO 2012148316 А1, опубл. 01.11.

13), заключающийся в учете расхода активной электрической энергии, при котором осуществляется измерение активной мощности путем непрерывного измерения напряжения и тока в подключенной нагрузке, перемножение измеренного напряжения и тока с умножением на коэффициент мощности нагрузки (косинус угла нагрузки), последующее интегрирование по времени измеренной мощности, что дает учтенный расход активной электрической энергии, потребленной нагрузкой от питающей сети, отличающийся тем, что при несинусоидальности напряжений и токов электрической сети указанное перемножение осуществляют только для значений основной (первой) гармоники напряжения и тока, и косинуса угла между ними. Данный способ позволяет оценивать активную мощность, потребляемую на основной гармонике.

Недостатком способа является невозможность оценить вклад источника искажения как со стороны питающей сети, так и со стороны нагрузки.

Известен способ гармонического анализа сигнала (патент РФ №2010246, опубл. 30.03.

1994), заключающийся в сравнении исследуемого сигнала с опорным синусоидальным сигналом частотой первой гармоники, при этом в определенные моменты времени для различных фазовых сдвигов между сигналами определяют модули отношений мгновенных значений двух сигналов и по отклонению значений этих модулей отношений между собой судят о степени содержания высших гармоник в исследуемом сигнале.

Недостатком способа является невозможность выявить источник искажения в электрической сети предприятия.

Известен способ выявления и оценки искажающей нагрузки в сети переменного тока (патент РФ №2206099, опубл. 10.06.2003), принятый за прототип.

Принцип действия данного способа состоит в определении места подключения искажающей нагрузки к фидерной линии путем определения знака и величины активной мощности высших гармоник.

Для упрощения анализа отыскание мощности высших гармоник предлагается заменить измерением составляющей активной мощности основной гармоники идеального симметричного вентиля, предполагаемое введение которого могло бы привести к существующей величине и форме напряжения и тока в контрольной точке сети. Для оценки полной мощности высших гармоник искажающей нагрузки указанную мощность первой гармоники вентиля умножают на коэффициент пропорциональности, зависящий от величин активных сопротивлений участков сети с различных сторон от точки подключения указанной нагрузки.

К недостаткам данного способа следует отнести необходимость в перерыве электроснабжения на время включения в сеть вентиля, а также необходимость определения коэффициентов пропорциональности для оценки мощности искажений, вносимых с различных сторон от места измерения для оценки полной мощности высших гармоник.

Технический результат изобретения заключается в выявлении источника высших гармоник путем включения в сеть фильтрокомпенсирующего устройства, настроенного на частоту исследуемой гармоники, и оценки зависимости тока системы от активного сопротивления фильтрокомпенсирующего устройства. По результатам анализа зависимости происходит выявление источника высших гармоник с целью их дальнейшей компенсации.

Читайте также:  Оптические бесконтактные выключатели

Технический результат достигается тем, что в качестве устройства для анализа источников высших гармоник в контрольной точке сети параллельно нагрузке подключают фильтр, настроенный в последовательный резонанс на частоту исследуемой гармоники, затем снимают зависимость тока исследуемой гармоники системы IS от активного сопротивления фильтра RФ, по анализу зависимости тока системы на высшей гармонике от активного сопротивления фильтра определяют местонахождение источника нелинейных искажений.

Если зависимость имеет выпуклый характер, превалируют искажения со стороны нагрузки, если зависимость имеет вогнутый характер, либо вогнутый с наличием экстремума, наибольший вклад в искажения вносит питающая сеть, данный опыт проводится для всех гармоник, вклад которых в общую форму кривой тока и напряжения наиболее значителен, на основании данных заключений производится дальнейший способ устройств подавления и компенсации высших гармоник и места их установки с целью повышения качества электроэнергии. Представляется возможность судить о местонахождении источника искажений как со стороны питающей сети, так и со стороны нагрузки без перерыва электроснабжения объекта, применения сложных вычислительных устройств, появляется основание для более целесообразного выбора устройств подавления и компенсации высших гармоник и места их установки для повышения качества электроэнергии, что приводит к увеличению ресурса электрооборудования, снижению количества ложных срабатываний устройств автоматики, улучшению качества выпускаемой продукции в условиях предприятия

Предлагаемый способ поясняется чертежами, представленными на фиг. 1 и фиг. 2, где на фиг.

1 показана схема замещения электрической сети, включающей в себя источник напряжения, питающую линию с конечной величиной внутреннего активного и реактивного сопротивления и подключенными в параллель потребителями электроэнергии, часть которых относится к категории искажающих нагрузок с несинусоидальной формой тока на сетевом входе, на фиг.

1: U1, U2, …, Un — источники напряжения различных гармоник, представляющие параметры питающей сети, RS, XS — активное и реактивное сопротивление системы (внутреннее сопротивление источника и питающей линии), RH, XH — параметры линейной нагрузки, I1, I2, … In — источники тока, представляющие нелинейную нагрузку с несинусоидальной формой тока на сетевом входе, XC, XL, RФ, — параметры фильтрокомпенсирующего устройства. Схему электроснабжения представляют в виде, показанном на фиг. 1, далее в точке измерения подключается фильтрокомпенсирующее устройство, настроенное на частоту исследуемой гармоники, т.е. необходимо выполнение следующего неравенства:

где ωрез — частота резонанса фильтрокомпенсирующего устройства.

Для получения зависимостей тока системы на исследуемой гармонике от активного сопротивления фильтра, представленных на фиг. 2, был произведен анализ уравнения, выражающего ток системы в зависимости от активного сопротивления фильтра.

Уравнение имеет вид:

Сопротивление установленного фильтра считаем чисто активным, поскольку фильтр настроен на исследуемую гармонику. Также принимаем в расчет допущения, согласно которым углы сдвига фаз источника тока (нелинейной нагрузки) и источника напряжения (питающей сети) принимаются равными нулю ( ; ).

В результате проведенных преобразований получена зависимость модуля тока системы от активного сопротивления фильтра в аналитическом виде:

где коэффициенты соответственно равны:

a=(U·RH)2+(I·RH·XH+U·XH)2;

b=2·(U·RH·XH)·(I·RH·XH+U·XH);

c=(U·RH·XH)2;

d=(RS·RH-XS·XH)+(RH·XH+RS·XH+RH·XS);

e=2[(RS·RH-XS·XH)(-XS·XH·RH)+RS·XH·RH(RH·XH+RS·XH+RH·XS)];

f=(-XS·XH·RH)2+(RS·XH·RH)2.

Зависимости модуля тока системы от активного сопротивления включенного фильтрокомпенсирующего устройства при различных сочетаниях источников искажений представлены на фиг.

2, где верхняя кривая — зависимость модуля тока системы на исследуемой гармонике от активного сопротивления фильтрокомпенсирующего устройства при источнике искажений со стороны питающей сети, нижняя кривая — та же зависимость при источнике искажения только со стороны нелинейной нагрузки, пунктирной линией обозначен ток системы без подключения фильтрокомпенсирующего устройства, промежуточные кривые получены при различных сочетаниях искажений как со стороны питающей сети, так и со стороны нагрузки.

Способ осуществляется следующим образом — производится оценка наличия высших гармоник в электрической сети, производится расчет и выбор параметров фильтро-компенсирующего устройства, с последующим включением его в сеть и снятие зависимости модуля тока системы от активного сопротивления фильтра на исследуемой гармонике. По анализу данной зависимости производится оценка вклада как питающей сети, так и нелинейной нагрузки, с целью выбора средств для компенсации нелинейных искажений и места установки.

Из полученных расчетным путем результатов следует, что функция, имеющая вогнутый вид либо выпуклый с наличием экстремума (зависимости обозначенные сплошной линией на фиг.

2), указывает на искажение в напряжении, вызванное питающей сетью, если функция имеет выпуклый характер, без наличия экстремумов (зависимости, обозначенные штрих-пунктирной линией на фиг.

2), то наибольшее влияние оказывает искажение тока, вызванное нелинейной нагрузкой.

Достоинством способа выявления источника высших гармоник является простота его реализации, экономичность затрат на устройство для его осуществления, возможность его применения без перерыва в электроснабжении, а также использование на действующих объектах с установленными фильтрокомпенсирующими устройствами.

Способ выявления источника высших гармоник, заключающийся в определении местоположения источника искажения в электрической сети переменного тока, содержащей искажающие нагрузки, источник сетевого напряжения синусоидальной формы, питающую линию с конечной величиной внутреннего активного и реактивного сопротивления и подключенными в параллель потребителями электроэнергии, часть которых относится к категории искажающих нагрузок с несинусоидальной формой тока на сетевом входе, отличающийся тем, что в качестве устройства для анализа источника высших гармоник в контрольной точке сети параллельно нагрузке подключают фильтр, настроенный в последовательный резонанс на частоту исследуемой гармоники, затем снимают зависимость тока исследуемой гармоники системы IS от активного сопротивления фильтра RФ, по анализу зависимости тока системы на высшей гармонике от активного сопротивления фильтра определяют местонахождение источника нелинейных искажений.

Источник: http://www.FindPatent.ru/patent/257/2573706.html

Причины появления гармонических искажений тока в электросети и способы их измерения

Этот материал подготовлен специалистами компании «ЭлектроАС».
Нужен электромонтаж или электроизмерения? Звоните нам!

Появлению эффекта гармонических искажений тока в электрических сетях человечество обязано бурному развитию техники и инновационным технологиям в эволюции электрооборудования.

Эти процессы начали массово замещать линейных потребителей электроэнергии и безинверторные электродвигатели оборудованием, принцип работы которого строился на нескольких циклах преобразования поставляемой электрической энергии.

Причины появления гармоник в электросети
По своей физической сути, гармоники являются синусоидальными волнами, суммирующимися с основной частотой 50 Гц. Таким образом, комплексная синусоида представляет собой сумму конкретного числа гармонических искажений тока с большими или меньшими показателями.

Практически все современные устройства влияют на возникновение в сети гармонических искажений. Причиной, вызывающей искажение напряжения и тока в электросети, выступают нелинейные потребители, которые используют ток несинусоидального типа. Среди таких источников стоит выделить:

• электродвигатели с инверторной системой управления, комплексы плавного пуска двигателей, выпрямители управляемого и неуправляемого типа, блоки питания;

• электротермическое оборудование – лазеры, дуговые и индукционные печи с высокой частотой, сварочные агрегаты, микроволновые установки и т.п.;

• осветительные устройства – люминесцентные, дуговые и газоразрядные лампы;

• бытовое оборудование – кондиционеры, телевизоры, аудио и видеосистемы, радиоприёмники, компьютеры, микроволновки, электрочайники и т.д.;

• офисные устройства – ксероксы, принтеры, серверы, блоки беспрерывного питания, мониторы.

Способы измерений гармоник
Чтобы убрать негативные последствия гармонических искажений тока в электросети, необходимо провести комплекс работ по внедрению установок конденсаторного типа, которые будут выполнять компенсаторную функцию по реактивной мощности, а также фильтров гармоник. Но для правильного подбора фильтрующего и компенсирующего оборудования нужно предварительно всесторонне измерить основные параметры электросети:

• величину и уровни гармонических искажений тока и напряжения;

• активную реактивную мощность;

• полную мощность и коэффициент мощности;

• мощность нелинейных искажений;

• уровень провалов и перенапряжений в линии;

• пик-фактор или амплитудный коэффициент;

• изменение светового потока.

Для определения вышеперечисленных параметров могут использоваться разные приборы. Современные технологии позволяют достаточно точно измерять показатели электрических сетей. Для поверхностного анализа можно использовать осциллографы (посмотреть можно по ссылке http://lab-snab.

ru/osczillografyi), компактность и автономность которых позволяет проводить измерения, как на улице, так и внутри помещений.

В случае необходимости получения более развёрнутых данных по всем параметрам функционирования электросетей, лучше воспользоваться анализаторами качества электроэнергии (посмотреть можно по ссылке http://lab-snab.ru/analizatoryi_kachestva_elektroenergii).

Они имеют более широкий функционал при тех же компактных размерах и полной автономности, что и осциллографы. Возможность перенесения полученных данных на ПК и дальнейшая обработка с помощью специального программного обеспечения значительно облегчают их анализ.

Почему необходимо противодействовать проявлениям гармоник в сети
Появление гармоник в электросети свидетельствует об искажённых параметрах тока или напряжения, что, в свою очередь, является признаком наличия возмущений в сети распределения и ухудшения качества поступающей электроэнергии. Присутствие гармоник может стать причиной следующих негативных последствий:

• увеличение текущего значения тока приводит к перегрузкам в распределительных сетях;

• суммирование токов высших гармоник, которые кратные трём и генерируются нагрузками по однофазной сети, способствует перегрузкам в нейтральных проводниках;

• возникновение перегрузок, вибраций и преждевременного старения электрооборудования (двигателей, генераторов, трансформаторов);

• возникновение повышенного шума трансформаторов;

• преждевременное старение и перегрузка конденсаторов, отвечающих за повышение коэффициента мощности;

• возникновение помех в телефонных линиях и сетях связи.

Все эти факторы имеют суммарное экономическое последствие, которое выливается в необходимости замены вышедшего из строя раньше положенного срока оборудования, в повышенном расходовании электроэнергии и её увеличенным потерям, в ложном срабатывании предохранителей и автоматических выключателей, останавливающих производственный процесс. Именно поэтому своевременное выявление и устранение гармоник имеют большое значение в надёжности функционирования электросетей и подаче качественной электроэнергии конечным потребителям.

Источник: http://elektroas.ru/prichiny-poyavleniya-garmonicheskix-iskazhenij-toka-v-elektroseti-i-sposoby-ix-izmereniya

Нормы качества электрической энергии. Гармоники тока

Рейтинг:  5 / 530Нормы качества электрической энергии. Гармоники тока.

В большинстве случаев люди предпочитают делать упор на качество. Часто высокое качество заметно при внешнем осмотре какого-либо предмета или объекта.

Качество можно заметить при длительной эксплуатации чего-либо. Для контроля качества создаются комиссии. Однако качество есть и у вещей, которые нельзя увидеть.

Поговорим о качестве электроэнергии в целом и о некоторых его особенностях в частности.

Нормы качества электрической энергии в системах электроснабжения общего назначения регулируются ГОСТ 13109-97. В нем перечислены основные требования, предъявляемые к качеству электрической энергии.

Эти требования приведены ниже:

Читайте также:  Лазерная сварка

-отклонение значения основной частоты напряжения электропитания от номинального значения, Гц;

-колебания напряжения и фликер, %;

-медленные изменения напряжения, %;

-несимметрия напряжений в трехфазных системах, %;

-несинусоидальность напряжения, %.

Подробно остановимся на последнем критерии. Как известно, теоретически напряжение на клеммах источника питания является синусоидальной функцией от времени, то есть, скажем, на осциллографе, подключенном к бытовой сети, теоретически должна получиться синусоида.

Но в век стремительного роста научно-технического прогресса и, как следствие, нарастания вычислительных мощностей, форма кривой напряжения изменяется по мере удаления от источника питания к приемнику, создающему искажения напряжения.

Это происходит из-за влияния нелинейной нагрузки – нагрузки, сопротивление которой меняется в зависимости от приложенного напряжения или протекающего через нее тока.

К нелинейной нагрузке относятся выпрямительные и инверторные установки, дуговые печи, источники бесперебойного питания (ИБП или UPS), устройства плавного пуска – все электрооборудование, содержащее силовую (сильноточную) электронику: диоды, тиристоры, транзисторы.

Благодаря математическому анализу инженеры в области электротехники нашли способ разложения искаженной синусоиды напряжения: оказывается, любую искаженную синусоиду можно представить как сумму графиков различных «чистых» синусоид. Посмотрим на рисунок ниже — осцилограмму напряжения между одной из фаз и нулем.

Здесь синим показана «идеальная» синусоида величиной 220 В и частотой 50 Гц, значение 220 В принято за единицу. Это и есть первая — основная — гармоника.

К такой форме напряжения стремятся предприятия по производству электроэнергии. На среднеквадратичное значение напряжения именно такой формы спроектированы электрические аппараты.

И при таком напряжении в трёх фазах сети при симметричной нагрузке ток через нулевой проводник протекать не будет.

Зелёным изображено напряжение, искаженное нелинейной нагрузкой.

Приближенно такую форму напряжения можно получить на осциллографе или анализаторе электрической сети, подключив их к выпрямителю без сглаживающего фильтра.

Как видно, его величина выше напряжения основной гармоники, то есть выше 220 В. Этот искаженный сигнал можно разложить на основную и пятую (показанную голубым цветом) гармонику.

Из осцилограммы также видно, что величина пятой гармоники намного ниже 220 В, а ее частота в 250 Гц кратна основной частоте в 50 Гц. Сложив графики пятой и основной гармоник, получим кривую напряжения на клеммах электроприемника, обозначенную зелёным.

Любой искаженный сигнал можно получить, используя основную гармонику и гармоники высших порядков (третьи, седьмые, девятые и т. д.).

Определившись с понятиями, перейдем к практической стороне вопроса: чем чревато наличие высших гармоник и как с ними бороться.

Наличие нелинейных потребителей может приводить к:

— ложному срабатыванию защиты;

— перегреву нулевого провода или постоянному наличию напряжения на нем;

— некорректной работе измерительных приборов,

— повышению или понижению напряжения в распределительной сети;

— повышению тока вследствие резонанса.

Ток в нулевом проводнике при наличии высших гармоник может протекать даже при симметричной загрузке трех фаз.

К особенно нежелательным эффектам может приводить использование конденсаторных установок для компенсации реактивной мощности.

В электротехнике существует понятие резонанс токов – значительное увеличение тока, протекающего по сети, в результате равенства индуктивного и ёмкостного сопротивлений, которые зависят от частоты. Рассмотрим пример.

В одном большом офисном здании из-за перегрева конденсаторов произошло отключение автоматических установок компенсации реактивной мощности, подключенных к той же шине 0,4 кв, что и ИБП компьютерного оборудования. Для выяснения причины аварии были сделаны измерения уровня гармоник.

Исследования показали, что возник резонанс на 11-й гармонике, генерируемой ИБП, с увеличением ее тока с 30 А при отключенной конденсаторной установке до 283 А при полностью включенной.

После анализа проблемы и компьютерного моделирования было решено использовать фильтрокомпенсирующее устройство (ФКУ) — особый тип конденсаторных установок, не только компенсирующий реактивную мощность, но и фильтрующий высшие гармоники.

Мы плавно подошли к методам борьбы с высшими гармониками, к которым можно отнести следующее:

-применение специальных схем соединения обмоток электрических машин, не пропускающих гармоники определённых порядков;

-применение ФКУ: активных и пассивных фильтров гармоник;

-обеспечение симметричного режима работы трёхфазных систем;

-снижение полного сопротивления распредсети;

-применение 12-полупериодных выпрямителей в ИБП.

Однако следует помнить, что не существует единого уникального решения для повышения качества электроэнергии, потому что в условиях каждого конкретного предприятия причины возникновения гармоник и возможные методы борьбы с ними различаются.

Источник: https://tmr-power.com/stati/normy-kachestva-garmoniki

Источники помех в электрических сетях

Разместить публикацию Мои публикации Написать

Гармоники

Высшие гармоники (кратные) представляют собой синусоидальные напряжения или токи, частота которых отличается от основной частоты в целое число раз.

Гармонические искажения напряжений и токов возникают из-за наличия в сетях элементов или оборудования с нелинейной вольт-амперной характеристикой.

Основные источники гармонических помех — преобразовательные и выпрямительные установки, индукционные и дуговые печи, люминесцентные лампы. Из бытового оборудования наиболее сильными источниками гармонических помех являются телевизоры.

Определенный уровень гармонических помех может создавать и оборудование энергосистем: вращающиеся машины , трансформаторы. Однако, как правило, эти источники не основные.

Основными источниками некратных гармоник являются: статические преобразователи частоты, циклоконверторы, индукционные двигатели, сварочные машины, дуговые печи, системы управления токами наложенной частоты.

Статические преобразователи частоты состоят из выпрямителя переменного тока исходной частоты в постоянный ток и преобразователя постоянного тока в переменный требуемой частоты. Напряжение постоянного тока модулируется выходной частотой преобразователя, вследствие чего во входном токе возникают некратные гармоники.

Статические преобразователи частоты используются, главным образом, для двигателей с регулируемой скоростью вращения, применение которых быстро развивается.

Двигатели мощностью до нескольких десятков киловатт присоединяются непосредственно к низковольтным сетям, более мощные — к сетям среднего напряжения через собственные трансформаторы. Существует несколько схем выполнения статических преобразователей частоты с различными характеристиками.

Частоты некратных гармоник зависят от выходной частоты и пульсности преобразователя. Подобные преобразователи используются также для печей, работающих на средних частотах.

Циклоконверторы представляют собой трехфазные преобразователи большой мощности (несколько мегаватт), которые превращают трехфазный ток исходной частоты в трехфазный или однофазный ток пониженной частоты (обычно менее 15 Гц), используемый для питания тихоходных двигателей большой мощности. Они состоят из двух управляемых выпрямителей, проводящих ток попеременно то в одном, то в другом направлении. Циклоконверторы используются в очень редких случаях. Токи интергармоник достигают 8-10% от тока основной частоты. В связи с большой мощностью циклоконверторов они присоединяются к сетям с большой мощностью короткого замыкания, поэтому напряжения интергармоник оказываются малыми. Измерения, проведенные на двух таких установках в Швейцарии, показали, что их величины в сетях 50 и 220 кВ не превышают 0,1% от номинального напряжения.

Индукционные двигатели могут в ряде случаев генерировать интергармоники из-за наличия зазора между статором и ротором, особенно в сочетании с насыщением стали.

При нормальной скорости вращения ротора частоты интергармоник находятся в диапазоне 500-2000 Гц, но при запуске двигателя «пробегают» весь диапазон частот вплоть до установившегося значения.

Помехи, создаваемые двигателями, могут быть значительными при установке их в конце длинной линии низкого напряжения (более 1 км). В этих случаях были замерены интергармоники величиной до 1%.

Сварочные машины и дуговые сталеплавильные печи генерируют широкий и непрерывный спектр гармоник. частоты гармоник и интергармоник, генерируемых преобразова-тельным оборудованием.

Отклонение напряжения

Отклонения напряжения обуславливаются изменением нагрузок потребителей в течение суток и соответствующей работой устройств, регулирующих напряжения (трансформаторы с РПН).

Колебания напряжения

Колебания напряжения представляют собой серию изменений случайного или циклического характера.

Колебания напряжения вызываются работой электроприемников с резко-переменным характером потребления мощности и происходят при работе следующего оборудования: сварочных машин сопротивления и дуговых, прокатных станов, мощных двигателей с изменяющейся нагрузкой, электродуговых сталеплавильных печей. Скачкообразные изменения напряжения могут возникать также при коммутациях нагрузок и электрооборудования (например: конденсаторных батарей).

Кратковременные провалы напряжения

Кратковременные провалы напряжения представляют собой неожиданные снижения напряжения с его восстановлением через интервал времени от нескольких периодов основной частоты до нескольких электрических градусов.

Кратковременные провалы напряжения вызываются коммутационными процессами в энергосистемах, связанных с короткими замыканиями, а также запуском мощных двигателей. Определенное количество таких провалов, вызванных работой автоматики энергосистем по ликвидации коротких замыканий, не может быть устранено и потребители должны учитывать это обстоятельство.

Импульсы напряжения

Источниками импульсов напряжения являются коммутационные операции в сетях энергосистем и грозовые явления.

Несимметрия трехфазной системы напряжений

Несимметрия трехфазной системы напряжения возникает, если фазные или междуфазные напряжения не равны по амплитуде или угол сдвига между ними не равен 120 эл. град.

Несимметрия трехфазной системы напряжений может быть вызвана тремя причинами: несимметрией параметров воздушных линий вследствие отсутствия транспозиции проводов или применения удлиненных циклов транспозиции.

Этот фактор проявляется преимущественно на линиях высокого напряжения; неравенством нагрузок фаз вследствие неравномерного распределения их между фазами (систематическая несимметрия) либо неодновре-менностью их работы (вероятностная несимметрия); — неполнофазными режимами линий электропередач (после отклю-чения одной из фаз вследствие повреждения).

Степень несимметрии напряжений, вызываемая несимметрией параметров линий электропередач, как правило, невелика (до 1%). Наиболее существенная несимметрия возникает при неполнофазных режимах работы линий электропередач, однако такие режимы бывают весьма редко. Поэтому основной наиболее распространенной причиной несимметрии являются нагрузки сети.

В сетях промышленных предприятий источниками несимметрии могут быть: мощные однофазные нагрузки, индукционные плавильные и нагревательные печи, сварочные агрегаты, печи электрошлакового переплава; трехфазные электроприемники длительно работающие в несимметричном режиме, электродуговые сталеплавильные печи.

Отклонения частоты

Отклонения частоты возникают вследствие несоответствия мощности генераторов вырабатывающих электроэнергию и потребляемой нагрузки.

При превышении генераторной мощностью мощности нагрузки скорость генераторов возрастает, пропорционально ей возрастает частота.

Мощность, потребляемая нагрузкой, также увеличивается, при определенном значении частоты наступает баланс между генерируемой и потребляемой мощностью. Аналогичная картина снижения частоты наблюдается, если мощность нагрузки превышает мощность генераторов.

425

Закладки<\p>

Источник: https://energoboard.ru/post/2068/

Ссылка на основную публикацию