Что такое удельное электрическое сопротивление

Электрическое сопротивление и проводимость

Дата публикации: 26 марта 2013.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника.

В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии.

Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении.

В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.

Рисунок 1. Условное обозначение электрического сопротивления

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б.

В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании.

Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Материал проводника Удельное сопротивление ρ в
Серебро Медь Алюминий Вольфрам Железо СвинецНикелин (сплав меди, никеля и цинка)Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) РтутьНихром (сплав никеля, хрома, железа и марганца) 0,016 0,0175 0,03 0,05 0,13 0,2 0,42 0,43 0,5 0,941,1

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро.

1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом.

Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора.

Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться.

Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом.

Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры.

Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Металл α Металл α
Серебро Медь Железо ВольфрамПлатина 0,0035 0,0040 0,0066 0,00450,0032 Ртуть Никелин Константан НихромМанганин 0,0090 0,0003 0,000005 0,000160,00005

Из формулы температурного коэффициента сопротивления определим rt:

rt = r0 [1 ± α (t – t0)].

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

rt = r0 [1 ± α (t – t0)] = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Источник: Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

Источник: https://www.electromechanics.ru/electrical-engineering/basic-knowledge/482-resistance-resistivity-and-conductivity-of-conductors.html

Сопротивление и удельное сопротивление

Физика > Сопротивление и удельное сопротивление

Сопротивление и удельное сопротивление характеризуют степень, в которой объект или материал препятствуют потоку электрического тока.

Задача обучения

  • Выявить свойства материала, описываемые сопротивлением и удельным сопротивлением.

Основные пункты

  • Сопротивление объекта основывается на его форме и материале.
  • Удельное сопротивление (p) – неотъемлемое свойство материала и прямо пропорционально полному сопротивлению (R).
  • Сопротивление отличается в зависимости от материалов. Также и резисторы располагаются на много порядков.
  • Резисторы устанавливают последовательно или параллельно. Эквивалентное сопротивление сети резисторов отображает суммирование всего сопротивления.

Термины

  • Параллельное эквивалентное сопротивление – сопротивление сети, где каждый резистор подвергается той же разности напряжения, что и токи сквозь них. Тогда обратное эквивалентное сопротивление равно сумме обратного сопротивления всех резисторов в сети.
  • Эквивалентное сопротивление – сопротивление сети резисторов, установленных так, что напряжение по сети выступает суммой напряжения на каждом резисторе.
  • Удельное сопротивление – степень, в которой материал сопротивляется электрическому потоку.

Сопротивление – электрическое свойство, создающее препятствия течению. Перемещающийся по проводу ток напоминает воду, текущую в трубе, а падение напряжения – перепад давления.

Сопротивление выступает пропорциональным давлению, которое нужно для формирования конкретного потока, а проводимость пропорциональна скорости потока. Проводимость и сопротивление выступают соотносимыми.

Сопротивление основывается на форме и материале объекта. Легче всего рассматривать цилиндрический резистор и уже от него переходить к сложным формам. Электрическое сопротивление цилиндра (R) будет прямо пропорциональным длине (L). Чем длиннее, тем больше столкновений будет происходить с атомами.

Единый цилиндр с длиной (L) и площадью поперечного сечения (А). Сопротивление потоку тока аналогично сопротивлению жидкости в трубе. Чем длиннее цилиндр, тем сильнее сопротивление. А вот с ростом площади поперечного сечения уменьшается сопротивление

Разные материалы гарантируют различное сопротивление. Определим удельное сопротивление (p) вещества так, чтобы сопротивление (R) было прямо пропорциональным p. Если удельное выступает неотъемлемым свойством, то простое сопротивление – внешнее.

Типичный осевой резистор

Что определяет удельное сопротивление? Сопротивление в зависимости от материала может сильно отличаться. Например, у тефлона проводимость в 1030 раз ниже, чем показатель меди.

Откуда такое отличие? У металла наблюдается огромное количество делокализованных электронов, которые не задерживаются в конкретном месте, а свободно путешествуют на большие дистанции. Однако в изоляторе (тефлон) электроны тесно связаны с атомами и нужна серьезная сила, чтобы оторвать их.

В некоторых керамических изоляторах можно встретить сопротивление больше 1012 Ом. У сухого человека – 105 Ом.

Разность напряжения в сети отображает сумму всех напряжений и общее сопротивление передается формулой:

Читайте также:  Устройство воздушных лэп разного напряжения

Req = R1 + R2 + ⋯ + RN.

Резисторы в параллельной конфигурации проходят сквозь одинаковую разность напряжения. Поэтому можно вычислить эквивалентное сопротивление сети:

1/Req = 1/R1 + 1/R2 + ⋯ + 1/RN.

Параллельное эквивалентное сопротивление можно представить в формуле двумя вертикальными линиями или слешем (//). Например:

Каждое сопротивление R задается как R/N. Резисторная сеть отображает комбинацию параллельных и последовательных соединений. Ее можно разбить на более мелкие составляющие.

Эту комбинированную схему можно разбить на последовательные и параллельные компоненты

Некоторые сложные сети нельзя рассмотреть таким способом. Но нестандартное значение сопротивления можно синтезировать, если объединить несколько стандартных показателей последовательно и параллельно.

Это также можно использовать для получения сопротивления с более высокой номинальной мощностью, чем у отдельных резисторов.

В конкретном случае все резисторы подключены последовательно или параллельно и номинал индивидуальных умножается на N.

(Пока оценок нет)

Источник: http://v-kosmose.com/fizika/soprotivlenie-i-udelnoe-soprotivlenie/

Что такое удельное сопротивление проводника?

В соответствии с современными научными представлениями все вещества в отношении электричества делятся на такие группы:

  • проводники;
  • диэлектрики (с изоляционными свойствами);
  • полупроводники.

Далее будут рассмотрены некоторые особенности веществ, которые способны проводить электрический ток.

Электроны и ток

В основе современного представления об электрическом токе лежит предположение о том, что он состоит из материальных частиц — зарядов.

Но различные физические и химические опыты дают основания утверждать, что эти носители заряда могут быть различного типа в одном и том же проводнике. И эта неоднородность частиц влияет на плотность тока.

Для вычислений, которые связаны с параметрами электротока, применяются определенные физические величины. Среди них важное место занимают проводимость вместе с сопротивлением.

  • Проводимость связана с сопротивлением взаимной обратной зависимостью.

Известно, что при существовании некоторого напряжения, приложенного к электрической цепи, в ней появляется электрический ток, величина которого связана с проводимостью этой цепи.

Это фундаментальное открытие сделал в свое время немецкий физик Георг Ом. С тех пор в ходу закон, называемый законом Ома. Он существует для разных вариантов цепей.

Поэтому формулы для них могут быть непохожими друг на друга, поскольку соответствуют совсем разным условиям.

В любой электрической цепи имеется проводник. Если в нем находится один тип частиц-носителей заряда, ток в проводнике подобен потоку жидкости, который имеет определенную плотность. Она определяется по такой формуле:

О плотности токаВычисление плотности тока обусловленного, однотипными заряженными частицами

Большинство металлов соответствуют однотипности заряженных частиц, благодаря которым существует электрический ток. Для металлов вычисление удельной электрической проводимости производится по такой формуле:

Формула для вычисления удельной электрической проводимости металлов

Поскольку можно вычислить проводимость, определить удельное электрическое сопротивление теперь труда не составит. Выше уже было упомянуто, что удельное сопротивление проводника — это величина, обратная проводимости. Следовательно,

Формула для вычисления удельного электрического сопротивления

В этой формуле буква греческого алфавита ρ (ро) используется для обозначения удельного электрического сопротивления. Такое обозначение наиболее часто используется в технической литературе.

Однако можно встретить и несколько иные формулы, с помощью которых вычисляется удельное сопротивление проводников.

Если для расчетов применять классическую теорию металлов и электронную проводимость в них, удельное сопротивление вычисляется по такой формуле:

Вычисление удельного сопротивления с применением классической электронной теории металлов

Однако есть одно «но». На состояние атомов в металлическом проводнике влияет продолжительность процесса ионизации, которое осуществляется электрическим полем.

При однократном ионизирующем воздействии на проводник атомы в нем получат однократную ионизацию, которая создаст баланс между концентрацией атомов и свободных электронов. И величины этих концентраций получатся равными.

В этом случае имеют место такие зависимости и формулы:

Удельное сопротивление при однократной ионизации

Девиации удельных проводимостей и сопротивлений

Далее рассмотрим, от чего зависит удельная проводимость, связанная обратной зависимостью с удельным сопротивлением. Удельное сопротивление вещества — это довольно-таки абстрактная физическая величина. Каждый проводник существует в виде конкретного образца.

Для него характерно наличие различных примесей и дефектов внутренней структуры. Они учитываются как отдельные слагаемые выражения, определяющего удельное сопротивление в соответствии с правилом Маттиссена.

Это правило также учитывает рассеяние движущегося потока электронов на колеблющихся в зависимости от температуры узлах кристаллической решетки образца.

Наличие внутренних дефектов, таких как вкрапление различных примесей и микроскопические пустоты, также увеличивает удельное сопротивление. Для определения количества примесей в образцах удельное сопротивление материалов измеряется для двух значений температуры материала образца.

Одна температурная величина — комнатная, а другая соответствует жидкому гелию. По отношению результата измерения при комнатной температуре к результату при температуре жидкого гелия получают коэффициент, который иллюстрирует структурное совершенство материала и его химическую чистоту.

Коэффициент обозначается буквой β.

Правило Маттиссена

Если в качестве проводника электрического тока рассматривается металлический сплав со структурой твердого раствора, которая неупорядочена, величина остаточного удельного сопротивления может быть существенно больше удельного сопротивления. Такая особенность металлических сплавов из двух составляющих, не относящихся к редкоземельным элементам, так же, как и к переходным элементам, охватывается специальным законом. Его называют законом Нордгейма.

Закон Нордгейма

Современные технологии в электронике все больше стремятся в сторону миниатюризации. Причем настолько, что вскоре появится слово «наносхема» взамен микросхемы.

Проводники в таких устройствах настолько тонкие, что правильным будет называть их пленками из металла. Вполне понятно то, что пленочный образец своим удельным сопротивлением будет отличаться в большую сторону от более крупного проводника.

Малая толщина металла в пленке приводит к появлению в нем свойств полупроводников.

Начинает проявляться соразмерность толщины металла со свободным пробегом электронов в этом материале. Места для движения электронов остается мало.

Потому они начинают мешать друг другу двигаться упорядоченно, что и приводит к увеличению удельного сопротивления. Для пленок из металла удельное сопротивление рассчитывают по специальной формуле, полученной на основе экспериментов.

Формула названа именем Фукса — ученого, который изучал удельное сопротивление пленок.

Формула Фукса

Пленки — это весьма специфические образования, которые сложно повторить так, чтобы свойства нескольких образцов были одинаковыми. Для приемлемой точности в оценке пленок применяют специальный параметр — удельное поверхностное сопротивление.

Формула для вычисления удельного поверхностного сопротивления

Из металлических пленок на подложке микросхем формируются резисторы. По этой причине расчеты удельного сопротивления — это весьма востребованная задача в микроэлектронике.

Величина удельного сопротивления, очевидно, имеет влияние со стороны температуры и связана с ней зависимостью прямой пропорциональности. Для большинства металлов эта зависимость имеет некоторый линейный участок в определенном температурном диапазоне.

В таком случае удельное сопротивление определяется формулой:

Расчет удельного сопротивления при заданной температуре

В металлах электроток возникает по причине большого числа свободных электронов, концентрация которых относительно велика.

Причем, электроны так же определяют и большую теплопроводность металлов. По этой причине между удельной электрической проводимостью и удельной теплопроводностью установлена связь особым законом, который был обоснован экспериментальным путем.

Этот закон Видемана-Франца характерен такими формулами:

Закон Видемана — ФранцаЗакон Видемана-Франца

Заманчивые перспективы сверхпроводимости

Однако самые удивительные процессы происходят при минимальной технически достижимой температуре жидкого гелия. При таких условиях охлаждения все металлы практически утрачивают свое удельное сопротивление.

Провода из меди, охлажденные до температуры жидкого гелия, оказываются способными проводить токи многократно большие по сравнению с обычными условиями.

Если бы на практике такое стало возможным, экономический эффект получился бы неоценимо большим.

Постоянный магнит парит над сверхпроводящей подложкой

Еще более удивительным оказалось открытие высокотемпературных проводников. Эти разновидности керамики при обычных условиях были очень далеки по своему удельному сопротивлению от металлов.

Но при температуре примерно на три десятка градусов выше жидкого гелия они становились сверхпроводниками. Открытие такого поведения неметаллических материалов стало мощным стимулом для исследований.

Из-за величайших экономических последствий практического применения сверхпроводимости на это направление были брошены весьма значительные финансовые ресурсы, начались масштабные исследования.

Но пока что, как говорится, «воз и ныне там»… Керамические материалы оказались непригодными для практического применения. Условия поддержания состояния сверхпроводимости требовали таких больших расходов, что уничтожалась вся выгода от ее использования.

Но эксперименты со сверхпроводимостью продолжаются. Прогресс налицо. Уже получена сверхпроводимость при температуре 165 градусов Кельвина, однако для этого требуется высокое давление.

Создание и поддержание таких особых условий опять-таки отрицает коммерческое использование этого технического решения.

Дополнительные факторы влияния

В настоящее время все продолжает идти своим путем, и для меди, алюминия и некоторых других металлов удельное сопротивление продолжает обеспечивать их промышленное использование для изготовления проводов и кабелей.

В заключение стоит добавить еще немного информации о том, что не только удельное сопротивление материала проводника и температура окружающей среды влияют на потери в нем при прохождении электротока.

Весьма значима геометрия проводника при использовании его на повышенной частоте напряжения и при большой силе тока.

Толщина слоя с электротоком в проводе на разной частоте

В этих условиях электроны стремятся сосредотачиваться вблизи поверхности провода, и его толщина как проводника утрачивает смысл. Поэтому можно оправданно уменьшить в проводе количество меди, изготовив из нее только наружную часть проводника.

Еще одним фактором увеличения удельного сопротивления проводника является деформация. Поэтому, несмотря на высокие показатели некоторых электропроводящих материалов, в определенных условиях они могут не проявиться. Следует правильно подбирать проводники для конкретных задач.

В этом помогут таблицы, показанные далее.

Таблица 1Таблица 2Таблицы выбора проводов для различных условий эксплуатации

Источник: https://domelectrik.ru/baza/teoriya/udelnoe-soprotivlenie

5. Удельное электрическое сопротивление

Удельное электрическое сопротивление

Величина допустимой токовой нагрузки на провода является грубой оценкой их сопротивления, основывающейся на способности тока нагревать эти провода до высокой температуры.

Иногда мы сталкиваемся с такими ситуациями, в которых падение напряжения, созданное сопротивлением проводов, создает нам совершенно иные проблемы (не связанные с нагревом).

Например, у нас может быть схема, для которой величина напряжения является критической, и не должна падать ниже определенного значения:

Напряжение источника питания данной схемы составляет 230 В, а для питания нагрузки требуется как минимум 220 В. Отсюда можно сделать вывод, что потери напряжения на проводах не должны превышать 10 В.

Так как проводов у нас два, то делим 10 вольт на 2 и получаем по 5 вольт допустимых потерь напряжения на каждый провод.

Используя Закон Ома (R = U / I), мы можем рассчитать максимально допустимое сопротивление каждого провода:

Нам известно, что длина каждого из проводов равна 70 метрам, но как мы сможем рассчитать реальное сопротивление конкретных проводов определенного размера и дины? В этом нам поможет следующая формула:

Данная формула соотносит сопротивление проводника с его удельным сопротивлением (греческая буква «ро» ρ), длиной (l) и площадью поперечного сечения (S).

Из этой формулы видно, что сопротивление провода возрастет при увеличении его длины (аналогия: жидкости труднее течь по длинной трубе, чем по короткой), и уменьшится при увеличении площади поперечного сечения (аналогия: жидкости легче течь по толстой трубе, чем по тонкой).

Удельное сопротивление является постоянной величиной для конкретного типа материала, из которого изготовлен провод.

Читайте также:  Организация эксплуатации электрических распределительных сетей

Удельные сопротивления некоторых проводящих материалов можно найти в нижеприведенной таблице. Из этой таблицы видно, что хорошим проводником является медь, по проводимости она уступает только серебру.

Металл ρ, Ом·мм2/м
Серебро 0,016
Медь 0,0175
Золото 0,023
Алюминий 0,0271
Иридий 0,0474
Молибден 0,054
Вольфрам 0,055
Цинк 0,059
Никель 0,087
Железо 0,098
Платина 0,107
Олово 0,12
Свинец 0,205
Титан 0,5562 — 0,7837
Висмут 1,2
Сплав ρ, Ом·мм2/м
Сталь 0,1400
Никелин 0,42
Константан 0,5
Манганин 0,43…0,51
Нихром 1,05…1,4
Фехраль 1,15…1,35
Хромаль 1,3…1,5
Латунь 0,07…0,08

Значения здесь даны при температуре t = 20° C. Сопротивления сплавов зависят от их точного состава и могут варьироваться.

Обратите внимание на приведенную в таблице единицу измерения удельного сопротивления (Ом·мм2/м). Она говорит нам о том, что в формуле R=ρl/S нужно использовать длину в метрах, а площадь поперечного сечения в квадратных миллиметрах.

Давайте вернемся к нашему примеру, в котором мы подбираем провод, обладающий сопротивлением 0,2 Ом или менее на длине 70 метров. Предполагая, что будет использоваться медный провод (самый распространенный тип электрических проводов), можно преобразовать последнюю формулу в следующий вид:

Таким образом, в нашем случае достаточно будет медного провода сечением 6,125 мм2. Допустимая токовая нагрузка такого провода выше заявленных в схеме 25 А.

Источник: http://www.radiomexanik.spb.ru/11.-fizika-provodnikov-i-dielektrikov/5.-udelnoe-elektricheskoe-soprotivlenie.html

Удельное электрическое сопротивление и проводимость

Большинство законов физики основано на экспериментах. Имена экспериментаторов увековечены в названиях этих законов. Одним из них был Георг Ом.

Опыты Георга Ома

Он установил в ходе экспериментов по взаимодействию электричества с различными веществами, в том числе металлами фундаментальную взаимосвязь плотности электрического тока, напряжённости электрического поля и свойства вещества, которое получило название «удельная проводимость». Формула, соответствующая этой закономерности, названная как «Закон Ома» выглядит следующим образом:

j= λE, в которой

  • j — плотность электрического тока;
  • λ — удельная проводимость, именуемая также как «электропроводность»;
  • E – напряжённость электрического поля.

В некоторых случаях для обозначения удельной проводимости используется другая буква греческого алфавита — σ. Удельная проводимость зависит от некоторых параметров вещества. На её величину оказывают влияние температура, вещества, давление, если это газ, и самое главное структура этого вещества. Закон Ома соблюдается только для однородных веществ.

Для более удобных расчётов используется величина обратная удельной проводимости.

Она получила название «удельное сопротивление», что так же связано со свойствами вещества, в котором течёт электрический ток, обозначается греческой буквой ρ и имеет размерность Ом*м.

Но поскольку для различных физических явлений применяются разные теоретические обоснования, для удельного сопротивления могут быть использованы альтернативные формулы. Они являются отображением классической электронной теории металлов, а также квантовой теории.

Формулы

В этих утомительных, для простых читателей, формулах появляются такие множители, как постоянная Больцмана, постоянная Авогадро и постоянная Планка.

Эти постоянные применяются для расчетов, которые учитывают свободный пробег электронов в проводнике, их скорость при тепловом движении, степень ионизации, концентрацию и плотность вещества. Словом, всё довольно сложно для не специалиста.

Чтобы не быть голословным далее можно ознакомиться с тем, как всё выглядит на самом деле:

Особенности металлов

Поскольку движение электронов зависит от однородности вещества, ток в металлическом проводнике течёт соответственно его структуре, которая влияет на распределение электронов в проводнике с учётом его неоднородности.

Она определяется не только присутствием включений примесей, но и физическими дефектами – трещинами, пустотами и т.п. Неоднородность проводника увеличивает его удельное сопротивление, которое определяется правилом Маттисена.

Это несложное для понимания правило, по сути, говорит о том, что в проводнике с током можно выделить несколько отдельных удельных сопротивлений. А результирующим значением будет их сумма.

Слагаемыми будут удельное сопротивления кристаллической решётки металла, примесей и дефектов проводника.

Поскольку этот параметр зависит от природы вещества, для вычисления его определены соответствующие закономерности, в том числе и для смешанных веществ.

Несмотря на то, что сплавы это тоже металлы, они рассматриваются как растворы с хаотической структурой, причём для вычисления удельного сопротивления имеет значение, какие именно металлы входят в состав сплава. В основном большинство сплавов из двух компонентов, которые не принадлежат к переходным, а также к редкоземельным металлам попадают под описание законом Нодгейма.

Как отдельная тема рассматривается удельное сопротивление металлических тонких плёнок. То, что его величина должна быть больше чем у объёмного проводника из такого же металла вполне логично предположить.

Но при этом для плёнки вводится специальная эмпирическая формула Фукса, которая описывает взаимозависимость удельного сопротивления и толщины плёнки.

Оказывается, в плёнках металлы проявляют свойства полупроводников.

А на процесс переноса зарядов оказывают влияние электроны, которые перемещаются в направлении толщины плёнки и мешают перемещению «продольных» зарядов.

При этом они отражаются от поверхности плёночного проводника, и таким образом один электрон достаточно долго совершает колебания между его двумя поверхностями. Другим существенным фактором увеличения удельного сопротивления является температура проводника.

Чем выше температура – тем сопротивление больше. И наоборот, чем ниже температура, тем сопротивление меньше.

Металлы являются веществами с наименьшим удельным сопротивлением при так называемой «комнатной» температуре. Единственным неметаллом, который оправдывает своё применение как проводник, является углерод. Графит, являющийся одной из его разновидностей, широко используется для изготовления скользящих контактов.

Он имеет очень удачное сочетание таких свойств как удельное сопротивление и коэффициент трения скольжения. Поэтому графит является незаменимым материалом для щёток электродвигателей и других скользящих контактов.

Величины удельных сопротивлений основных веществ, используемых для промышленных целей, приведены в таблице далее.

Сверхпроводимость

При температурах соответствующих сжижению газов, то есть вплоть до температуры жидкого гелия, которая равна – 273 градуса по Цельсию удельное сопротивление уменьшается почти до полного исчезновения.

И не только у хороших металлических проводников, таких как серебро, медь и алюминий. Практически у всех металлов. При таких условиях, которые называются сверхпроводимостью, структура металла не имеет тормозящего влияния на движение зарядов под действием электрического поля.

Поэтому ртуть и большинство металлов становятся сверхпроводниками.

Но, как выяснилось, относительно недавно в 80-х годах 20-го века, некоторые разновидности керамики тоже способны к сверхпроводимости. Причём для этого не надо использовать жидкий гелий. Такие материалы назвали высокотемпературными сверхпроводниками. Однако уже прошло несколько десятков лет, и ассортимент высокотемпературных проводников существенно расширился.

Но массового использования таких высокотемпературных сверхпроводящих элементов не наблюдается. В некоторых странах сделаны единичные инсталляции с заменой обычных медных проводников на высокотемпературные сверхпроводники. Для поддержания нормального режима высокотемпературной сверхпроводимости необходим жидкий азот.

А это получается слишком дорогим техническим решением.

Поэтому, малое значение удельного сопротивления, дарованное Природой меди и алюминию, по-прежнему делает их незаменимыми материалами для изготовления разнообразных проводников электрического тока.

Источник: http://podvi.ru/elektrotexnika/udelnoe-soprotivlenie.html

Что такое удельное сопротивление меди: величины, характеристики, значения

12.01.2018

Про закон Ома многие слышали, но не все знают, что это такое. Изучение начинается со школьного курса физики. Более подробно проходят на физфаке и электродинамике. Рядовому обывателю эти знания маловероятно пригодятся, но они необходимы для общего развития, а кому-то для будущей профессии.

С другой стороны, элементарные знания об электричестве, его устройстве, особенностей в домашних условиях помогут предостеречь себя от беды. Недаром закон Ома называют основным законом электричества.

Домашнему мастеру нужно обладать знаниями в области электричества, чтобы не допустить перенапряжения, что может повлечь увеличению нагрузки и возникновению пожара.

Понятие электрического сопротивления

Зависимость между основными физическими величинами электрической цепи – сопротивлением, напряжением, силой тока открыл немецкий физик Георг Симон Ом.

Электросопротивление проводника это величина, характеризующая его противостояние электрическому току.

Иными словами, часть электронов под действием электрического тока на проводник покидает свое место в кристаллической решетке и направляется к положительному полюсу проводника.

Часть электронов остается в решетке, продолжая вращаться вокруг атома ядра. Данные электроны и атомы образуют электросопротивление, препятствующее продвижению высвободившихся частиц.

Вышеописанный процесс применим ко всем металлам, но сопротивление в них происходит по-разному. Это связано с разностью размеров, форм, материала, из которого состоит проводник. Соответственно размеры кристаллической решетки имеют неодинаковую форму у разных материалов, следовательно, электросопротивление продвижению по ним тока происходит не одинаково.

Из данного понятия вытекает определение удельного сопротивления вещества, что является индивидуальным показателем для каждого металла в отдельности. Удельное электрическое сопротивление (УЭС) это физическая величина, обозначающаяся греческой буквой ρ и характеризующаяся способностью металла воспрепятствовать прохождению электричества через него.

Медь – основной материал для проводников

УЭС вещества рассчитывается по формуле, где одним из важных показателей является температурный коэффициент электросопротивления. Таблица содержит значения УЭС трех известных металлов в диапазоне температур от 0 до 100°C.

Если взять показатель УЭС железа, как одного из доступных материалов, равного 0,1 Ом, то для 1 Ом понадобится 10 метров. Самым низким электросопротивлением обладает серебро, для его показателя 1 Ом выйдет 66,7 метров. Значительная разница, но серебро является дорогостоящим металлом, использование которого повсеместно нецелесообразно.

Следующим по показателям идет медь, где на 1 Ом необходимо 57,14 метров. В связи с доступностью, стоимостью по сравнению с серебром, медь является одним из популярных материалов для использования ее в электрических сетях.

Низкое удельное сопротивление медного провода или сопротивление медной проволоки дает возможность использовать медный проводник во многих отраслях науки, техники, а также в промышленном и бытовом назначении.

Величина удельного сопротивления

УЭС величина непостоянная, она изменяется в зависимости от следующих факторов:

  • Размер. Чем больше диаметр проводника, тем больше электронов он через себя пропускает. Следовательно, чем его размер меньше, тем больше УЭС.
  • Длина. Электроны проходят через атомы поэтому чем длиннее проволока, тем больше приходится преодолевать через них электронам. При расчетах необходимо учитывать длину, размер провода, потому что чем длиннее, тоньше провод, тем его УЭС больше и наоборот. Не рассчитав нагрузку используемого оборудования можно привести к перегреванию провода и возгоранию.
  • Температура. Известно, что температурный режим имеет большое значение на поведение веществ по-разному. Металл, как ничто другое, изменяет свои свойства при разных температурах. Удельное сопротивление меди напрямую зависит от температурного коэффициента сопротивления меди и при нагревании увеличивается.
  • Коррозия. Образование коррозии существенно увеличивает нагрузку. Происходит это по причине воздействия окружающей среды, попадания влаги, соли, грязи, т. п. проявлений. Рекомендуется изолировать, предохранять все соединения, клеммы, скрутки, устанавливать защиту для оборудования, находящегося на улице, своевременно проводить замену поврежденных проводов, узлов, агрегатов.

Расчет сопротивления

Расчеты производятся при проектировании объектов разного назначения и использования, ведь жизнеобеспечение каждого происходит за счет электричества.

Учитывается все, начиная с осветительных приборов, заканчивая технически сложным оборудованием. В домашних условиях также будет нелишним произвести расчет, особенно если предусматривается замена электропроводки.

Для частного домостроения необходимо рассчитать нагрузку, иначе «кустарная» сборка электропроводки может привести к возгоранию.

Целью расчета является определение общего сопротивления проводников всех используемых устройств, учитывая их технические параметры. Оно вычисляется по формуле R=p*l/S, где:

R – вычисляемый результат;

Читайте также:  Системы счисления чисел

p – показатель УЭС из таблицы;

l – длина провода (проводника);

S – диаметр сечения.

Единицы измерения

В международной системе единиц физических величин (СИ) электрическое сопротивление измеряется в Омах (Ом). Единица измерения УЭС согласно системе СИ равна такому УЭС вещества, при котором проводник из одного материала длиной 1 м с сечением 1 кв. м. имеет сопротивление 1 Ом. Наглядно применение 1 ом/м относительно разным металлам приведено в таблице.

Значимость удельного сопротивления

Связь удельного сопротивления и проводимости можно рассматривать как обратные величины. Чем больше показатель одного проводника, тем ниже показатель другого и наоборот. Поэтому при вычислении электропроводимости используется расчет 1/r, потому что число обратное к Х, есть 1/Х и наоборот. Удельный показатель обозначается буквой g.

Преимущества электролитической меди

Низким показателем УЭС (после серебра) как преимуществом, медь не ограничивается. Она обладает уникальными по своим характеристикам свойствами, а именно пластичностью, высокой ковкостью.

Благодаря таким качествам изготавливается высокой степени чистоты электролитическая медь для производства кабелей, которые используются в электроприборах, компьютерной технике, электроиндустрии и автомобилестроении.

Зависимость показателя сопротивления от температуры

Температурный коэффициент является величиной, которая равняется изменению напряжения части цепи и УЭС металла в результате изменений температуры. Большинство металлов склонно к росту УЭС при увеличении температуры из-за тепловых колебаний кристаллической решетки.

Температурный коэффициент сопротивления меди влияет на удельное сопротивление медного провода и при температуре от 0 до 100°C составляет 4,1·10− 3(1/Кельвин). У серебра данный показатель при тех же условиях имеет значение 3,8, а у железа 6,0.

Это еще раз доказывает эффективность использования меди в роли проводника.

Рекомендуем к прочтению:

Плавка меди в домашних условиях

Что такое удельное сопротивление меди: величины, характеристики, значения Ссылка на основную публикацию

Источник: https://oxmetall.ru/metalli/med/udelnoe-soprotivlenie

ПОИСК

    Удельное электрическое сопротивление в ом м. .. (10ч-16) 10  [c.452]

    Тангенс угла диэлектрических потерь при 20°С при 200 °С Удельное электрическое сопротивление объемное, Ом см поверхностное (при относительной влажности до 100%). Ом Электрическая прочность, МВ/м при 20 °С при 250 °С [c.492]

    Важнейшим критерием для определения потенциального пожара или взрыва является энергия электрической искры. Если искра достаточно интенсивна и тепловая энергия превышает предельную величину, то может произойти воспламенение.

Следовательно, чтобы количественно определить степень взрывоопасности определенного процесса, необходимо знать степень электризации веществ. Основной характеристикой степени электризации веществ является их удельное электрическое сопротивление.

Все вещества с удельным электрическим сопротивлением, превышающим I МОм-см, способны электризоваться и требуют специальных мер защиты. [c.339]

    К электрическим инициаторам может быть отнесен разряд статического электричества, возникновение и накопление зарядов которого в потоке жидкого кислорода обусловливается достаточно большим удельным электрическим сопротивлением жидкого кислорода (более 10 ом см). Оно может существенно меняться в зависимости от состава примесей, содержащихся в жидком кислороде. [c.27]

    Для характеристики кокса весьма важен показатель удельного электрического сопротивления кокса (УЭС), Показатель УЭС кокса важен сам по себе, т.к. он в значительной мере влияет на электропроводность анода алюминиевого электролизера.

Удельное электросопротивление кокса может быть использовано в качестве стандартного показателя в ГОСТе в том случае, если он определяется на стандартном образце (средняя проба кокса прокаливается при 1300°С в течение 5 часов как и для анализа на пикнометрическую плотность).

Ситовой состав исследуемой пробы должен быть ограничен в узких рамках, а прибор для определения УЭС унифицирован. [c.35]

    Удельная электропроводность является, очевидно, величиной, обратной удельному электрическому сопротивлению. [c.424]

    При помощи величины т можно, как показали В. Ш. Шехтман, М. А. Веденеева и Н. П. Жук, сравнивать степень развития межкристаллитного разрушения и определять глубины проникновения коррозии у различных образцов, измеряя, например, изменение пх удельного электрического сопротивления р, так как [c.454]

    Если аппарат выполнен из диэлектрического материала, то покрытие внешних стенок проводящими материалами и заземление не устраняют возможности возникновения искровых разрядов на внутренней диэлектрической поверхности.

Защита от поверхностных разрядов внутри оборудования и от разрядов при пробое диэлектрической стенки аппаратов и коммуникаций выполняется так же, как и защита от разрядов с диэлектрических поверхностей.

Эффективным средством защиты диэлектрических поверхностей от статического электричества является покрытие их электропроводящими эмалями, удельное электрическое сопротивление которых составляет 1 —10 Мом-м. [c.173]

Рис. 11. Удельное электрическое сопротивление кокса в зависимости от его фракционного состава, времени прокаливания и способа охлаждения

    При обычной комнатной температуре спекающиеся угли, если они хорошо высушены, обладают значительным удельным электрическим сопротивлением [1—4, 7], превышающим 10 Ом-см. Во влажных углях эта величина сильно уменьшается. В антрацитах она падает до 10 Ом-см и ниже. Во всех случаях электросопротивление умень- [c.20]

    Удельное электрическое сопротивление, Ом-см………………………………..9,5-10″ [c.106]

    Вплоть до температур примерно 900 К, при которых в видимом диапазоне заметного излучения нет, интегральная нормальная излучательная способность связана с удельным электрическим сопротивлением рд, Ом-м, соотношением [c.194]

    Нефтяной кокс после прокаливания в промышленных печах должен иметь удельное электрическое сопротивление не вьпие 6 10 Ом м. [c.37]

    Удельное электрическое сопротивление в значительной степени зависит от условий определения — температуры, размера угольных частиц, давления на них, скорости нагревания и т. д. Все это необходимо учитывать при сопоставлении опытных данных, полученных различными исследователями. [c.202]

    По действующим правилам, защита от разрядов статического электричества должна осуществляться во взрыво- и пожароопасных производствах, отнесенных по СНиП IV М2—72 к категориям А, Б, Е (или по ПУЭ к помещениям классов В-1, В-1а и П-1), где применяются или получаются вещества, удельное электрическое сопротивление которых превышает 10 Ом-м. [c.148]

    Диэлектрические материалы поляризуются также и в результате радиоактивного облучения. Для горных пород это имеет важное практическое значение, поскольку в геохимии известны сотни радиоактивных изотопов с периодами полураспада, изменяющимися в очень широких пределах.

Например, при облучении диэлектрических сред пучком электронов энергия частиц может быть такой, что они будут проходить через материал (проникающая радиация), либо такой, что частицы будут поглощаться породой (непроникающая радиация).

Проникающая радиация вызывает накопление носителей зарядов вследствие захвата заряженных частиц, пришедших извне (электронов, ионов) и образования заряженных частиц в период облучения (например частицами).

В горных породах электрические объемные заряды могут накапливаться вблизи границы раздела радиоактивной и нерадиоактивной пород с высоким удельным электрическим сопротивлением, [c.133]

    Весьма важным физическим свойством твердых топлив является сопротивление, оказываемое ими при прохождении электрического тока. Удельное электрическое сопротивление зависит от индивидуальных свойств веществ и в случае углей — от молекулярного строения их органического вещества.

В последнее время при поисках новых угольных месторождений все шире используются геофизические методы, которые основываются на диэлектрических свойствах углей.

Электрическое сопротивление углей играет важную роль при различных технологических процессах переработки твердых топлив, связанных с использованием электрической энергии, например при электрококсовании, электрогазификации и т. д. [c.201]

    Необходимое условие длительного накапливания больших зарядов — малая активность и большое удельное электрическое сопротивления среды. Продолжительность накопления заряда определяется электрическим сопротивлением породы и скоростью подвода зарядов 4]. С увеличением дозы облучения поверхностная плотность зарядов возрастает до 5 Кл/м-. [c.134]

    Алканы — хорошие диэлектрики. Диэлектрическая проницаемость твердого парафина равна 2,2 (20°С), а удельное электрическое сопротивление 10 —10 Ом-см. Вследствие этого техническую смесь высокомолекулярных алканов (парафин) широко применяют [c.193]

    Вывод уравнения для определения удельного электрического сопротивления грунта методом четырех электродов………………411 [c.10]

    Полагая, что труба находится на глубине h м под поверхностью грунта, обладающего удельным электрическим сопротивлением 3000 Ом-см, определите [c.392]

    Удельное электрическое сопротивление р и коэффициент теплопроводности к некоторых простых вещестя при 20 С [c.530]

    Выбор класса функциональной зависимости, ашпроксимирующей матрш.(у данных, осуществляется из соображений сохранения физического соответствия математической модели реальному объекту.

Таким образом, лгеханические параметры объекта могут быть определены по совокупности измеренных электрофизических параметров.

качестве электрофизических параметров в математических моделях обычно выступают коэрцитивная сила Не, удельное электрическое сопротивление >, относительная магнитная проницаемость остаточная индукция Вг, намагниченность насыщения Ь и другие параметры.

Но дая измерения совокупности этих параметров необходимо применение разнообразных приборов, установок и датчиков, что делает практически невозможным использование многопараметровой модели для экспресс-оценки техническ010 состояния оборудования в производственных условиях. Поэтому несомненный интерес [c.304]

    Альтернативой укгтнному методу могут служить ра )личные варианты неразрушаюшего контроля, основанные на анализе структурно-чувствительных физических свойств материала. К ним относятся магнитная проницаемость удельное электрическое сопротивление р, коэрцитивная сила К3 и некоторые другие. [c.308]

    Марка Иопитовая основа Связующее Толщина, мм Стенень набуха- ния, % Полная обменная емкость влажной мембраны, мг-экв г Проч- ность на разрыо, кг/см Удельное электрическое сопротивление в 2 н. растворе K I, ом-см [c.167]

    Игольчатый кокс отличается анизотропией электрического сопротивления в направлении-текстуриро1аания удельное электрическое сопротивление ниже, а в перпендикулярном направлении — выше [43].

Частицы игольчатого кокса при прессовании электродов методом выдавливания ориентируются большей осью вдоль оси выдавливания, вследствие чего электроды обладают высокой электрической проводимостью и анизотропией удельного электрического сопротивления (УЭС).

Коэффициент анизотропии УЭСX/УЭС// для электродов на основе игольчатого кокса равен 1,32 [58]. [c.37]

    Удельное электрическое сопротивление торфа зависит от его влажности, точнее от присутствия электролитов в торфяной воде, которые резко снижают его удельное сопротивление. Согрешилин обнаружил, что с уменьшением влажности низинного торфа от 87,5 до 33,3% его электросопротивление непрерывно возрастает [4, с. 222]. [c.202]

    Удельное электрическое сопротивление антрацитов во много раз ниже, чем у менее метаморфизованных каменных углей.

Син-кинсон определил, что удельное объемное электросопротивление антрацитов параллельно напластованию (ру = 789—922 Ом-см) значительно меньше, чем в перпендикулярном направлении (р , = 4509—5090 Ом-см), что подтверждает анизотропность антрацитов [2, с. 80]. [c.202]

    Оптимальная концентрация ДСБ в буровом растворе составляет 0,5 — 1 % об. Разработанные смазочные добавки к буровым растворам на водной основе прошли широкие промысловые испытания на месторождениях Башкортостана, Западной Сибири и Удмуртии.

В частности, показателен двухгодичный опыт применения смазок ДСБ-4ТТ и ДСБ-4ТМП при бурении глубокой параметрической скважины №1-Леузы.

Он показал, что указанные смазки оказывают облагораживающее действие на параметры бурового раствора усиливаются его ингибирующие свойства, снижается показатель фильтрации, увеличивается удельное электрическое сопротивление, отсутствует вспенивающий эффект.

Применение данных смазок, благодаря комплексу их положительных свойств, обеспечило удовлетворительную устойчивость ствола скважины в процессе её бурения и позволило успешно выполнить запланированный комплекс геологогеофизических исследований. [c.14]

    Длинная труба диаметром 203,2 мм находится под землей на глубине 1,829 м. Разность потенциалов, измеренная с помощью двух медносульфатиыя электродов сравнения, расположенных на поверхности почвы, составляет 1,25 В.

Один электрод находится над трубой, второй — на расстоянии 18,288 м от первого под прямым углом к трубе. Электрод над трубой отрицателен по отношению ко второму электроду удельное электрическое сопротивление почвы равно 300 Ом-см.

[c.392]

Источник: http://chem21.info/info/56937/

Ссылка на основную публикацию