Преимущества высоковольтных лэп постоянного тока по сравнению с лэп переменного тока

Развитие высоковольтных линий электропередачи

Содержание:

  1. Введение.
  2. История высоковольтных ЛЭП постоянного тока.
  3. Принцип работы.
  4. Преимущества высоковольтных ЛЭП постоянного тока по сравнению с ЛЭП переменного тока
  5. Недостатки.
  6. Стоимость HVDC передачи
  7. Заключение.

Электроэнергетика имеет большое значение в хозяйстве любой промышленно развитой страны, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.). Отличительной чертой электроэнергии является одновременность её генерирования и потребления. 
Основная часть электроэнергии вырабатывается крупными электростанциями: тепловыми (ТЭС), гидравлическими (ГЭС), атомными (АЭС). Электростанции, объединённые между собой и с потребителями высоковольтными линиями электропередачи (ЛЭП), образуют электрические системы

Высоковольтная линия электропередачи, линия электропередачи напряжением выше 1 кв. В. л. э. бывают воздушные и подземные (подводные). Воздушной называют устройство для передачи и распределения электрической энергии по проводам, расположенным на открытом воздухе и закреплённым на опорах при помощи изоляторов и арматуры. Опоры, изготовленные из дерева, железобетона или металла, отстоят одна от другой на 50—500 м в зависимости от марки провода и типа опоры. Расстояние от провода до земли составляет не менее 6—8 м. Подземные (подводные) В. л. э., в которых используются провода в специальной изоляции, применяют для распределения энергии на территории городов и промышленных предприятий, а также при переходе через широкие водные преграды

Считается, что ушли в прошлое времена, когда решался вопрос, каким быть электросетям в мире – сетям постоянного или переменного тока (так называемая «война токов или напряжений», имевшая место на рубеже 19-20 веков). В настоящее время большинство сетей – это сети переменного напряжения с частотой 50 / 60 Гц. Тем не менее, последние события в энергетике показывают, что старая дискуссия может вернуться

Высоковольтная линия электропередачи постоянного тока (HVDC) использует для передачи электроэнергии постоянный ток, в отличие от более распространенных линий электропередач (ЛЭП) переменного тока.

Высоковольтные ЛЭП постоянного тока могут оказаться более экономичными при передаче больших объёмов электроэнергии на большие расстояния. Использование постоянного тока для подводных ЛЭП позволяет избежать потерь реактивной мощности, из-за большой ёмкости кабеля неизбежно возникающих при использовании переменного тока.

В определённых ситуациях ЛЭП постоянного тока могут оказаться полезными даже на коротких расстояниях, несмотря на высокую стоимость оборудования.

ЛЭП постоянного тока позволяет транспортировать электроэнергию между несинхронизированными энергосистемами переменного тока, а также помогает увеличить надёжность работы, предотвращая каскадные сбои из-за рассинхронизации фазы между отдельными частями крупной энергосистемы.

ЛЭП постоянного тока также позволяет передавать электроэнергию между энергосистемами переменного тока, работающими на разной частоте, например, 50 Гц и 60 Гц.

Такой способ передачи повышает стабильность работы энергосистем, так как, в случае необходимости, они могут использовать резервы энергии из несовместимых с ними энергосистем.

Современный способ передачи HVDC использует технологию, разработанную в 30-х годах XX века шведской компанией ASEA. Одни из первых систем HVDC были введены в строй в Советском Союзе в 1950 году между Москвой и городом Кашира, и островом Готланд и Швецией в 1954 году, с мощностью системы 10-20 МВт.

Самая длинная HVDC линия в мире в настоящее время находится в Китае и соединяет ГЭС Сянцзяба (англ.)русск. с городом Шанхай. Её длина 1980 км, мощность 6400 МВт при 800 кВ. В 2013 году в Бразилии будет сдана в эксплуатацию самая длинная HVDC линия (длиной 2375 км), она будет соединять ГЭС Санто-Антонио (англ.)русск. и Жирау (англ.)русск. с городом Сан-Паулу.

Первая ЛЭП постоянного тока для передачи электроэнергии на большое расстояние была запущена в 1882 году на линии Мисбах-Мюнхен. Она передавала энергию от вращаемого паровой машиной генератора постоянного тока на печь стекольного завода. Передаваемая мощность составляла всего 2,5 кВт и на линии не было преобразователей постоянного тока в переменный.

Первая ЛЭП, использующая разработанный швейцарским инженером Рене Тюри (Rene Thury) метод преобразования токов генератор-двигатель, была построена в 1889 году в Италии компанией Acquedotto de Ferrari-Galliera. Для увеличения напряжения пары генератор-двигатель были соединены последовательно.

Каждая группа была изолирована от земли и приводилась в движение основным двигателем. Линия работала на постоянном токе, с напряжением до 5000 В на каждой машине, некоторые машины имели двойные коммутаторы для уменьшения напряжения на каждом коммутаторе.

Эта система передавала мощность 630 кВт на постоянном напряжении 14 кВ на расстояние 120 км.

По ЛЭП Moutiers-Lyon передавалась вырабатываемая ГЭС мощность 8600 кВт на расстояние 124 мили, включая 6 миль подземного кабеля. Для преобразования тока использовались восемь последовательно соединенных генераторов с двойными коммутаторами, выдававшими на выходе напряжение в 150 кВ. Эта линия работала примерно с 1906 по 1936 гг.

К 1913 году в мире действовало пятнадцать ЛЭП системы Тюри, работавших на постоянном напряжении 100 кВ, которые использовались до 1930-х, но вращающиеся электрические машины были ненадёжны, дороги в обслуживании и имели низкий КПД. В первой половине 20-го столетия были опробованы и другие электромеханические устройства, но они не получили широкого распространения.

Для преобразования высокого постоянного напряжения в низкое было предложено сначала заряжать последовательно соединенные аккумуляторы, а затем подключать их параллельно и подсоединять к потребителю.

В начале XX века существовало, как минимум, две ЛЭП постоянного тока, использовавших этот принцип, но дальнейшего развития эта технология не получила из-за ограниченной ёмкости аккумуляторов, неэффективного цикла заряда/разряда и трудностей переключения между последовательным и параллельным соединением.

В период с 1920 по 1940 гг. для преобразования тока использовались ртутные вентили. В 1932 г.

Дженерал Электрик применила в Mechanicville, Нью-Йорк ртутные вентили на ЛЭП постоянного тока напряжением 12 кВ, которая также использовалась для преобразования генерируемого переменного тока частотой 40 Гц в переменный ток нагрузки частотой 60 Гц. В 1941 г.

была разработана 115-километровая подземная кабельная линия, мощностью 60 МВт, напряжением +/-200 кВ, для города Берлина, использовавшая ртутные вентили (Проект Эльба), но вследствие краха Третьего Рейха в 1945 проект не был завершен.

Использование кабеля объяснялось тем, что во время военного времени подземный кабель будет менее заметной целью бомбардировок. Оборудование перешло Советскому Союзу и было введено в эксплуатацию в 1950 году.

Дальнейшее использование ртутных вентилей в 1954 г. положило начало современным высоковольтным ЛЭП постоянного тока. Первая такая ЛЭП была создана компанией ASEA между материковой Швецией и островом Готланд. Ртутные вентили использовались на всех ЛЭП, строившихся до 1975 г.

, но позднее были вытеснены полупроводниковыми приборами. С 1975 по 2000 гг. для преобразования тока широко применялись тиристоры, которые сейчас активно вытесняются транзисторами.

[11] С переходом на более надёжные полупроводниковые приборы были проложены десятки подводных высоковольтных ЛЭП постоянного тока.

На данный момент в мире осталось всего две ЛЭП с преобразователями на ртутных вентилях, все остальные были демонтированы или заменены преобразователями на тиристорах.

Как известно, мощность равна произведению напряжения на ток        (P = U * I). Таким образом, увеличив напряжение можно уменьшить передаваемый по проводу ток и, как следствие, можно уменьшить сечение провода, необходимого для передачи этой мощности, что удешевит ЛЭП

На сегодняшний день не существует способа без больших потерь изменять в широких пределах напряжение постоянного тока. Самым эффективным устройством для изменения величины напряжения является трансформатор, работающий на переменном токе. Соревнование между сторонником постоянного тока Томасом Эдисоном и переменного тока Николой Тесла и Джорджа Вестингауза, известное как «Война токов», привело к победе сторонников переменного тока. Поэтому на входе всех высоковольтных ЛЭП постоянного тока устанавливается трансформатор для повышения напряжения переменного тока и оборудование для преобразования переменного тока в постоянный, а на выходе — оборудование преобразования постоянного тока в переменный и трансформатор для понижения напряжения этого переменного тока

Первым способом преобразования больших мощностей из постоянного тока в переменный и обратно была система генератор-двигатель, разработанная швейцарским инженером Рене Тюри (Rene Thury). Простыми словами, на входе ЛЭП двигатель переменного тока вращает генератор постоянного тока, а на выходе — двигатель постоянного тока вращает генератор переменного тока. Такая система имела довольно низкий КПД и низкую надёжность

Практическое применение ЛЭП постоянного тока стало возможным только с появлением мощного дугового электроприбора под названием ртутный (англ.)русск. вентиль

Позднее появились мощные полупроводниковые приборы — тиристоры, биполярные транзисторы с изолированным затвором (IGBT), мощные полевые транзисторы с изолированным затвором (MOSFET) и запираемые тиристоры (GTO)

по сравнению с ЛЭП переменного тока

Основным преимуществом высоковольтных ЛЭП постоянного тока является возможность передавать большие объёмы электроэнергии на большие расстояния с меньшими потерями, чем у ЛЭП переменного тока. В зависимости от напряжения линии и способа преобразования тока потери могут быть снижены до 3% на 1000 км. Передача энергии по высоковольтной ЛЭП постоянного тока позволяет эффективно использовать источники электроэнергии, удаленные от энергоузлов нагрузки

В ряде случаев высоковольтная лэп постоянного тока более эффективна, чем лэп переменного тока:

Длинные подводные кабели имеют высокую емкость. В то время как этот факт имеет минимальную роль для передачи электроэнергии на постоянном токе, переменный ток приводит к зарядке и разрядке емкости кабеля, вызывая дополнительные потери мощности. Кроме того, мощность переменного тока расходуется на диэлектрические потери

Высоковольтная ЛЭП постоянного тока может передавать большую мощность по проводнику, так как для данной номинальной мощности постоянное напряжение в линии постоянного тока ниже, чем амплитудное напряжение в линии переменного тока. Мощность переменного тока определяет действующее значение напряжение, но оно составляет только приблизительно 71 % амплитудного напряжения, которое определяет фактическую толщину изоляции и расстояние между проводниками. Поскольку у линии постоянного тока действующее значение напряжения равно амплитудному, становится возможным передавать на 41% больше мощности по существующей линии электропередачи с проводниками и изоляцией того же размера, что на переменном токе, что снижает затраты

Поскольку высоковольтная ЛЭП постоянного тока допускает передачу энергии между несинхронизированными распределительными системами переменного тока, это позволяет увеличить устойчивость системы, препятствуя каскадному распространению аварии с одной части энергосистемы на другую. Изменения в нагрузке, приводящие с десинхронизации отдельных частей электрической сети переменного тока, не будут затрагивать линию постоянного тока, и переток мощности через линию постоянного тока будет стабилизировать электрическую сеть переменного тока. Величину и направление перетока мощности через линию постоянного тока можно непосредственно регулировать и изменять для поддержания необходимого состояния электрических сетей переменного тока с обоих концов линии постоянного тока

Основным недостатком высоковольтной ЛЭП постоянного тока является необходимость преобразования типа тока из переменного в постоянный и обратно. Используемые для этого устройства требуют дорогостоящего ЗИП, так как, фактически, являются уникальными для каждой линии.

Преобразователи тока дороги и имеют ограниченную перегрузочную способность. На малых расстояниях потери в преобразователях могут быть больше чем в аналогичной по мощности ЛЭП переменного тока.

Источник: http://referat911.ru/Teplotehnika/razvitie-vysokovoltnyh-linij-jelektroperedachi/425792-2989045-place1.html

3. Принцип работы

Мощность равна произведению напряжения на ток (). Таким образом, увеличив напряжение можно уменьшить передаваемый по проводу ток и, как следствие, можно уменьшить сечение провода, необходимого для передачи этой мощности, что удешевит ЛЭП.

Читайте также:  Про тиристоры в картинках

На сегодняшний день не существует способа без больших потерь изменять в широких пределах напряжение постоянного тока. Самым эффективным устройством для изменения величины напряжения является транс-форматор, работающий на переменном токе.

Трансформатор — это статическое электромагнитное устройство, имею-щее две или более индуктивно связанные обмотки на каком-либо магнитопро-воде и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты. Трансфор-матор осуществляет преобразование переменного напряжения и/или гальвани-ческую развязку в самых различных областях применения — электроэнергетике, электронике и радиотехнике. Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.

Соревнование между сторонником постоянного тока Томасом Эдисоном и переменного тока Николой Тесла и Джорджа Вестингауза, известное как «Война токов», привело к победе сторонников переменного тока.

Поэтому на входе всех высоковольтных ЛЭП постоянного тока устанавливается трансфор-матор для повышения напряжения переменного тока и оборудование для преоб-разования переменного тока в постоянный, а на выходе — оборудование преоб-разования постоянного тока в переменный и трансформатор для понижения напряжения этого переменного тока.

Первым способом преобразования больших мощностей из постоянного тока в переменный и обратно была система генератор-двигатель, разработанная швейцарским инженером Рене Тюри (Rene Thury).

Простыми словами, на входе ЛЭП двигатель переменного тока вращает генератор постоянного тока, а на выходе — двигатель постоянного тока вращает генератор переменного тока.

Такая система имела довольно низкий КПД и низкую надёжность.

Практическое применение ЛЭП постоянного тока стало возможным только с появлением мощного дугового электроприбора под названием ртутный вентиль.

Позднее появились мощные полупроводниковые приборы — тиристоры, биполярные транзисторы с изолированным затвором (IGBT), мощные полевые транзисторы с изолированным затвором (MOSFET) и запираемые тиристоры (GTO).

4. Преимущества высоковольтных ЛЭП постоянного тока по сравнению с ЛЭП переменного тока

Основным преимуществом высоковольтных ЛЭП постоянного тока является возможность передавать большие объёмы электроэнергии на большие расстояния с меньшими потерями, чем у ЛЭП переменного тока.

В зависимости от напряжения линии и способа преобразования тока потери могут быть снижены до 3 % на 1000 км.

Передача энергии по высоковольтной ЛЭП постоянного тока позволяет эффективно использовать источники электроэнергии, удаленные от энергоузлов нагрузки.

В ряде случаев высоковольтная ЛЭП постоянного тока более эффек-тивна, чем ЛЭП переменного тока:

— при передаче энергии по подводному кабелю, который имеет довольно высокую ёмкость, приводящую при использовании переменного тока к потерям на реактивную мощность (например, 250 км линия Baltic Cable между Швецией и Германией);

— передача энергии в энергосистеме напрямую от электростанции к потребителю, без дополнительных отводов, например, в удаленные районы;

— увеличение пропускной способности существующей энергосистемы в случаях, когда установить дополнительные ЛЭП переменного тока сложно или слишком дорого;

— передача энергии и стабилизация между несинхронизированными энергосистемами переменного тока;

— присоединение удаленной электрической станции к энергосистеме, например, линия Nelson River Bipole;

— уменьшение стоимости линии за счет уменьшения количества про- водников. Кроме того, могут использоваться более тонкие проводники, так как HVDC не подвержен поверхностному эффекту;

— упрощается передача энергии между энергосистемами, использующими разные стандарты напряжения и частоты переменного тока;

— синхронизация с сетью переменного тока энергии, производимой возобновляемыми источниками энергии.

Длинные подводные кабели имеют высокую емкость. В то время как этот факт имеет минимальную роль для передачи электроэнергии на постоянном токе, переменный ток приводит к зарядке и разрядке емкости кабеля, вызывая дополнительные потери мощности. Кроме того, мощность переменного тока расходуется на диэлектрические потери.

Высоковольтная ЛЭП постоянного тока может передавать большую мощность по проводнику, так как для данной номинальной мощности постоян-ное напряжение в линии постоянного тока ниже, чем амплитудное напряжение в линии переменного тока.

Мощность переменного тока определяет действую-щее значение напряжения, но оно составляет только приблизительно 71 % максимального амплитудного напряжения, которое и определяет фактическую толщину изоляции и расстояние между проводниками.

Поскольку у линии постоянного тока действующее значение напряжения равно амплитудному, становится возможным передавать на 41 % больше мощности по суще-ствующей линии электропередачи с проводниками и изоляцией того же размера, что на переменном токе, что снижает затраты.

Поскольку высоковольтная ЛЭП постоянного тока допускает передачу энергии между несинхронизированными распределительными системами переменного тока, это позволяет увеличить устойчивость системы, препятствуя каскадному распространению аварии с одной части энергосистемы на другую.

Изменения в нагрузке, приводящие с десинхронизации отдельных частей электрической сети переменного тока, не будут затрагивать линию постоянного тока, и переток мощности через линию постоянного тока будет стаби-лизировать электрическую сеть переменного тока.

Величину и направление перетока мощности через линию постоянного тока можно непосредственно регулировать и изменять для поддержания необходимого состояния электрических сетей переменного тока с обоих концов линии постоянного тока.

Источник: http://fis.bobrodobro.ru/11449

Линии электропередач их характеристики и классификация

Один из столпов современной цивилизации – это электроснабжение. Ключевую роль в нем выполняют линии электропередачи – ЛЭП. Независимо от удаленности генерирующих мощностей от конечных потребителей, нужны протяженные проводники, которые их соединяют. Далее расскажем более детально о том, что из себя представляют эти проводники, именуемые как ЛЭП.

Какими бывают воздушные ЛЭП

Провода, прикрепленные к опорам, – это и есть воздушные ЛЭП. Сегодня освоены два способа передачи электроэнергии на большие расстояния. Они основаны на переменном и постоянном напряжениях.

Передача электроэнергии при постоянном напряжении пока еще менее распространена в сравнении с переменным напряжением.

Это объясняется тем, что постоянный ток сам по себе не генерируется, а получается из переменного тока.

По этой причине необходимы дополнительные электрические машины. А они стали появляться относительно недавно, поскольку в их основе используются мощные полупроводниковые приборы.

Такие полупроводники появились лишь 20–30 лет тому назад, то есть примерно в 90-е годы ХХ века. Следовательно, до этого времени уже были построены в большом количестве ЛЭП переменного тока.

Отличия линий электропередачи показаны далее на схематическом изображении.

Структура ЛЭП переменного токаСтруктура ЛЭП постоянного тока

Наибольшие потери вызывает активное сопротивление материала проводов. При этом не имеет значения, какой ток – постоянный или переменный. Для их преодоления напряжение в начале передачи повышается как можно больше.

Уже преодолен уровень в один миллион вольт. Генератор Г питает ЛЭП переменного тока через трансформатор Т1. А в конце передачи напряжение понижается. ЛЭП питает нагрузку Н через трансформатор Т2. Трансформатор является самым простым и надежным инструментом преобразования напряжений.

У читателя, мало знакомого с электроснабжением, скорее всего, появится вопрос о смысле передачи электроэнергии на постоянном токе. А причины чисто экономические – передача электроэнергии на постоянном токе именно в самой ЛЭП дает большую экономию:

  1. Генератор вырабатывает трехфазное напряжение. Следовательно, три провода для электроснабжения на переменном токе нужны всегда. А на постоянном токе всю мощность трех фаз можно передать по двум проводам. А при использовании земли как проводника – по одному проводу. Следовательно, экономия лишь на материалах получается трехкратной в пользу ЛЭП на постоянном токе.
  2. Электрические сети переменного тока при объединении в одну общую систему должны иметь одинаковую фазировку (синхронизацию). Это значит, что мгновенное значение напряжения в соединяемых электросетях должно быть одинаковым. Иначе между соединяемыми фазами электросетей будет разность потенциалов. Как следствие соединения без фазировки – авария, сопоставимая с коротким замыканием. Для электросетей постоянного тока вообще не характерна. Для них имеет значение лишь действующее напряжение на момент соединения.
  3. Для электрических цепей, работающих на переменном токе, характерен импеданс, который связан с индуктивностью и емкостью. Импеданс имеется также и у ЛЭП переменного тока. Чем протяженнее линия, тем больше импеданс и потери, с ним связанные. Для электрических цепей постоянного тока понятия импеданса не существует, как и потерь, связанных с изменением направления движения электрического тока. 
  4. Как уже упоминалось в п. 2, для стабильности в энергосистеме нужна синхронизация генераторов. Но чем больше система, работающая на переменном токе, и, соответственно, число электрогенераторов, тем сложнее их синхронизировать. А для энергосистем постоянного тока любое число генераторов будет нормально работать.

Из-за того, что сегодня нет достаточно мощных полупроводниковых или иных систем для преобразования напряжения, достаточно эффективного и надежного, большинство ЛЭП по-прежнему работает на переменном токе. По этой причине далее остановимся только на них.

Еще один пункт в классификации линий электропередачи – это их назначение. В связи с этим линии разделяются на

  • сверхдальние,
  • магистральные,
  • распределительные.

Их конструкция принципиально отличается из-за разных величин напряжения.

Так, в сверхдальних ЛЭП, являющихся системообразующими, применяются самые высокие напряжения, которые только существуют на нынешнем этапе развития техники. Величина в 500 кВ для них является минимальной.

Это объясняется значительным удалением друг от друга мощных электростанций, каждая из которых – это основа отдельной энергосистемы.

Внутри нее существует своя распределительная сеть, задача которой – обеспечение больших групп конечных потребителей. Они присоединены к распределительным подстанциям с напряжением 220 или 330 кВ на высокой стороне. Эти подстанции являются конечными потребителями для магистральных ЛЭП. Поскольку энергетический поток уже вплотную приблизился к поселениям, напряжение необходимо уменьшить.

Распределение электроэнергии выполняют ЛЭП, напряжение которых 20 и 35 кВ для жилого сектора, а также 110 и 150 кВ – для мощных промышленных объектов. Следующий пункт классификации линий электропередачи – по классу напряжения. По этому признаку ЛЭП можно опознать визуально.

Для каждого класса напряжения характерны соответствующие изоляторы. Их конструкция – это своего рода удостоверение линии электропередачи. Изоляторы изготавливаются увеличением числа керамических чашек соответственно увеличению напряжения.

А его классы в киловольтах (включая напряжения между фазами, принятые для стран СНГ) такие:

  • 1 (380 В);
  • 35 (6, 10, 20);
  • 110…220;
  • 330…750 (500);
  • 750 (1150).

Помимо изоляторов, отличительными признаками являются провода. С увеличением напряжения все больше проявляется эффект электрического коронного разряда. Это явление отбирает энергию и уменьшает эффективность электроснабжения.

Поэтому для ослабления коронного разряда с увеличением напряжения, начиная с 220 кВ, используются параллельные провода – по одному на каждые примерно 100 кВ.

Некоторые из воздушных линий (ВЛ) разных классов напряжения показаны далее на изображениях:

ВЛ напряжением 10 кВВл напряжением 110 кВВЛ напряжением 330 кВВл напряжением 1150 кВ

Опоры ЛЭП и другие заметные элементы

Для того чтобы провод надежно удерживался, применяются опоры. В простейшем случае это деревянные столбы. Но такая конструкция применима лишь к линиям до 35 кВ.

А с увеличением ценности древесины в этом классе напряжений все больше используются опоры из железобетона.

По мере увеличения напряжения провода необходимо поднимать выше, а расстояние между фазами делать больше. В сравнении опоры выглядят так:

Опоры ЛЭП

В общем, опоры – это отдельная тема, которая довольно-таки обширна. По этой причине в детали темы опор линий электропередачи здесь углубляться не будем. Но чтобы кратко и емко показать читателю ее основу, продемонстрируем изображение:

Читайте также:  Как обеспечивается безопасность лифтов

Атрибуты опор

В заключение информации о воздушных ЛЭП упомянем те дополнительные элементы, которые встречаются на опорах и хорошо заметны. Это

  • системы защиты от молнии,
  • а также реакторы.

Первые содержат специальный трос, который расположен выше проводов, и штыревые молниеотводы. Вторые предназначены для ограничения скорости нарастания тока при коротком замыкании. Реактор, по сути, – это дроссель.

Реакторы на опоре ЛЭП

Кроме перечисленных элементов, в линиях электропередачи применяется еще несколько. Но оставим их за рамками статьи и перейдем к кабелям.

Кабельные линии

Воздух – это изолятор. На этом его свойстве основаны воздушные линии. Но существуют и другие более эффективные материалы-изоляторы.

Их применение позволяет намного уменьшить расстояния между фазными проводниками. Но цена такого кабеля получается настолько велика, что не может быть и речи о его использовании вместо воздушных ЛЭП.

По этой причине кабели прокладывают там, где есть трудности с воздушными линиями:

  • в пределах населенных пунктов и предприятий при значительной разветвленности электросети;
  • при невозможности поставить опоры (линия прокладывается через большие водные пространства или горы, либо в производственном помещении).

Сложность конструкции силового кабеля для напряжения класса 110…220 кВ иллюстрирует изображение:

Высоковольтный кабель в разрезе

Кабельные линии прокладываются в грунте, воде или в специальных сооружениях:

  • туннелях,
  • каналах,
  • шахтах,
  • этажах,
  • эстакадах,
  • галереях.

Кабельный туннельКабельный канал в помещенииКабельный канал в грунтеКабельная шахтаКабельный этажКабельная эстакадаКабельная галерея

Недостатком кабельных линий является пожароопасность некоторых марок кабелей. Но для исключения таких аварий необходимо соблюдать режим нагрузки в соответствии с рекомендованными параметрами. Они указаны в ПУЭ и технической документации проводника.

Источник: https://domelectrik.ru/elektrosnabzhenie/seti/lep

Не спи, Гальвани

Москва, 08.11.2018

В конце апреля 1945 года, завершая окружение Берлина с юга и юго-запада, советские войска 1-го Украинского фронта вплотную приблизились к Эльбе.

Двадцать четвертого апреля 4-й гвардейский Кантемировский танковый корпус под командованием генерал-лейтенанта Павла Полубоярова с тяжелыми боями и потерями прорвался к реке и вышел в предместья городов Торгау и Дессау, примерно в ста километрах от столицы Германии.

Отпраздновав встречу с союзниками и начав по-хозяйски осваиваться на недавно отбитой у немцев территории, танкисты среди прочих большей частью разрушенных промышленных сооружений обнаружили уцелевшее здание, на первый взгляд напоминавшее обычную электроподстанцию.

Часть оборудования подстанции показалась странной даже много чего видавшим механикам, умевшим приспособить для ремонта техники почти любую трофейную железяку. Еще больше их насторожили два одножильных подземных кабеля, идущих от аппаратуры в бетонированный тоннель.

Насчет технической невидали бойцы имели четкие указания, в соответствии с которыми они и доложили куда надо, — и вскоре на объекте уже вовсю хозяйничали особисты фронта и группа прикомандированных технических специалистов.

Команды таких спецов, собранные из видных инженеров и ученых различных институтов страны в конце войны, буквально по пятам шли за действующей армией, собирая и анализируя научно-техническую информацию о достижениях трофейного технологического хай-тека, попутно мониторя уцелевшее в боях и бомбежках немецкое промышленное оборудование.

Уже после того как затихли последние майские бои, стало понятно, что кабели, берущие начало недалеко от Дессау, тянутся до Мариенфельда — пригорода Берлина, а найденный и допрошенный затем немецкий персонал Siemens и AEG, фирм, разработавших таинственную кабельную линию Эльба—Берлин, показал, что она была построена в рамках первого в истории проекта по строительству стокилометровой кабельной линии электропередачи постоянного тока (ППТ) высокого напряжения. Линия должна была передавать до 60 МВт мощности при напряжении 200 кВ, но заработать так и не успела. Технологию, вырванную в счет репараций в результате войны с немцами, подхватили советские электротехники, и по сути с этого проекта в мире возобновился практический интерес к транспорту электроэнергии постоянным током. Сейчас протяженные кабельные и воздушные линии ППТ — обычное дело, они составной частью входят в энергосистемы развитых стран, а преобразовательные устройства, включающие так называемые вставки постоянного тока, — почти обязательный элемент систем управления перетоками мощности между сетями переменного тока, которые продолжают оставаться основным транспортом для передачи электроэнергии. В России есть только одна работающая линия передачи и одна вставка постоянного тока. Наша страна, более сорока послевоенных лет лидировавшая в этой области, после почти двадцатилетнего простоя оказалась в числе отстающих и сейчас только приступает к разработке собственных технологий, попутно осваивая чужие.

Любые деньги за д

Формула тепловых потерь

Есть простая формула из школьного курса физики, определяющая тепловые потери в сетях электрического тока. Их величина равна произведению величин сопротивления сети на квадрат силы тока (Q=RI2).

Это значит, потери растут как при увеличении силы тока, так и при удлинении проводника, по которому течет этот ток, за счет увеличения его суммарного сопротивления. Чтобы как-то уменьшить сопротивление, можно увеличить сечение проводника, но при этом сильно утяжеляется и удорожается линия электропередачи.

Другой путь снижения потерь, понятный теперь и школьнику, — повышение напряжения, — становится очевидным при небольшой трансформации уже использованной формулы. По закону Ома сила тока — это частное, то есть результат деления величин мощности и напряжения.

Значит, формулу тепловых потерь можно представить и в таком виде: Q=R(P/U)2. Несложно сделать вывод, что передать значительную мощность на большое расстояние можно, только существенно повысив напряжение источника тока.

Без скин-эффекта

Главное преимущество переменного тока — гибкость в подключении нагрузок и генераторов на всем протяжении маршрута передачи электроэнергии.

При этом нет необходимости, как в случае с постоянным током, в возведении дорогих преобразовательных подстанций на ответвлениях от линии передачи.

Это особенно ценно, если маршрут ЛЭП пролегает по густонаселенным регионам, а выработка энергии производится во многих местах вдоль этого маршрута. Главный недостаток — сильное удорожание при строительстве линий переменного тока протяженностью свыше .

Высокая стоимость прокладки протяженных ЛЭП переменного тока складывается из нескольких взаимосвязанных составляющих. Прежде всего, для них требуется отвод площадей, значительно больших, чем для ППТ.

И дело тут даже не в стоимости самой земли (едва ли ее стоимость может быть серьезным фактором удорожания строительства, скажем, где-нибудь в сибирской тайге), а в цене подготовки площадки под возведение опор ЛЭП.

Требование к широким площадкам связано с тем, что на линиях переменного тока не удается полностью использовать пропускную способность линий, определяемую из предельно допустимого нагрева проводов.

Нагрев этот, сопровождаемый соответственным увеличением сетевых потерь, происходит в результате действия так называемого скин-эффекта (поверхностного эффекта), именно его и учитывал в своих расчетах Михаил Доливо-Добровольский, предсказывая ограничение протяженности линий переменного тока.

Суть эффекта в том, что при проникновении электромагнитных волн в глубь проводящей среды происходит их затухание, в результате чего переменный ток «не распределяется» по всему сечению проводника, а концентрируется преимущественно в поверхностном слое, вызывая его повышенный нагрев. «Коэффициент концентрации» тем больше, чем больше частота тока. Необходимость параллельных линий определяет намного большую материалоемкость у ЛЭП переменного тока (да и самих проводов у линий передачи трехфазного тока больше, чем у биполярного ППТ).

Специалисты ABB посчитали, что для передачи 12 000 МВт — кстати, мощности вполне сопоставимой с той, что в России планируется со временем передавать от Эвенкийской (Туруханской) ГЭС, — потребовалось бы восемь линий переменного тока при напряжении 800 кВ.

Или — всего две линии постоянного тока при таком же напряжении. Еще одно огромное преимущество ППТ заключается в малой величине потерь — всего около5 % при передаче энергии на расстояние свыше .

Чтобы достичь столь же малых потерь, в обустройство линий переменного тока той же протяженности пришлось бы инвестировать почти в полтора раза больше, а это миллиарды долларов.

Источник: http://expert.ru/expert/2007/40/linii_postoyannogo_toka/

Линии электропередачи постоянного тока

Разместить публикацию Мои публикации Написать

Преимущества линий электропередач постоянного тока состоят в следующем:

  1. Предел передаваемой мощности по линии не зависит от ее длины и значительно больше, чем у линий электропередач переменного тока;
  2. Снимается понятие предела по статической устойчивости, характерные для воздушных линий электропередачи переменного тока;
  3. Энергосистемы, связанные воздушные линии электропередачи постоянного тока могут работать несинхронно или с различными частотами;
  4. Требуется лишь два провода вместо трех или даже один, если использовать в качестве второго землю.

На рис. 1. приведена схема передачи постоянного тока, осуществленная по биполярной схеме(«два полюса — земля»).

На этом рисунке UD и UZ, преобразовательные (выпрямительная и инвекторная) подстанции; L — реактор или фильтр для уменьшения влияния высоких гармоник, пульсации напряжения и аварийных токов; rл -сопротивление линии; G, Т — генераторы и трансформаторы.

Выработка и потребление электроэнергии осуществляется на переменном токе.

Основные элементы линии постоянного тока:

  1. Управляемые высоковольтные выпрямители из которых собирается схема преобразовательной подстанции.
  2. Управляемые высоковольтные инверторы, из них также собирается схема преобразовательной подстанции.

Схема инверторной подстанции принципиально не отличается от схемы выпрямительной подстанции, так как выпрямители обратимы. Единственное отличие состоит в том, что на инверторной подстанции приходится устанавливать компенсирующие устройства, конденсаторы, либо синхронные компенсаторы для выдачи инверторам реактивной мощности, которая составляет около 50… 60% передаваемой активной мощности.

Средние точки обоих преобразовательных подстанций в биполярной передаче заземлены, а полюсы изолированы.

Напряжение полюса UП равно напряжению между полюсом и землей. Например, на передаче энергии Волгоград — Донбасс напряжение полюса относительно земли +400 кВ, а второго — 400 кВ. Напряжение Ud между полюсами 800 кВ.

Передача может быть разделена на две независимые полуцепи. В нормальном режиме при равных точках в полуцепях ток через землю близок к нулю.

Обе полуцепи передачи могут работать автономно и в случае аварии одного полюса половина мощности может передаваться по другому полюсу с возвратом через землю.

При аварии одного полюса или одной полуцепи вторая полуцепь может работать по униполярной схеме.

В униполярной передаче заземлен один из полюсов и имеется один провод, изолированный от земли. Второй провод либо заземлен с двух сторон передачи, либо отсутствует.

Такой заземленный второй провод применяется в тех случаях, когда недопустимо применение тока в земле (например, при вводах в крупные города).

Как правило, одна цепь униполярной передачи может состоять из одного провода и земли, а биполярная — из двух проводов. Описан опыт длительного пропускания постоянного тока через землю до 1200 А.

Униполярные схемы применяются для передачи небольших мощностей до 100… 200МВт на небольшие расстояния. Большие мощности на большие расстояния целесообразно передавать по биполярным схемам.

Преобразовательные подстанции из-за сложного и дорогостоящего оборудования очень увеличивают стоимость передач постоянного тока. В тоже время сама линия постоянного тока стоит дешевле, чем линия переменного тока, из-за меньшего количества проводов, изоляторов, линейной арматуры и более легких опор.

Пропускная способность мощности линии постоянного тока определяется значением и разностью напряжений по концам линии, ограничивается активными сопротивлениями линиями и концевых устройств, а также мощностью преобразовательных подстанций.

Однако пропускная способность мощности линии постоянного тока значительно больше, чем у линии переменного тока.

Читайте также:  Контроль и регулирование основных технологических параметров: расхода, уровня, давления и температуры

Полная мощность биполярной передачи линии Волгоград — Донбасс напряжением Ud = 800 кВ составляет 720 МВт. Введена в эксплуатацию крупнейшая в мире линия Экибастуз — Центр с UП = ±750 кВ, напряжением между полюсами Ud = 1500 кВ и длиной 2500 км. Пропускная способность мощности может быть доведена до 6000 МВт.

Основная область применения линий постоянного тока — передача больших мощностей на дальние расстояния. Однако особые свойства этих линий позволяют с успехом использовать их и в других случаях.

Например, линии постоянного тока оказываются эффективными при необходимости пересечения морских проливов, а также связи несинхронных систем или систем, работающих с разной частотой (так называемые вставки постоянного тока).

Наряду с линиями постоянного тока высокого и сверхвысокого напряжения в военном деле применяются и линии постоянного тока малого и среднего напряжения.

Широкое распространение получили следующие напряжения: малые напряжения — 6, 12, 24, 36,48, 60 вольт, средние напряжения — 110, 220, 400 вольт.

Для всех напряжений линии постоянного тока имеют следующие достоинства:

  1. Они не требуют расчета устойчивости.
  2. Напряжение в таких линиях более равномерно, так как в установившемся режиме они не генерируют реактивной мощности.
  3. Конструкции линий постоянного тока проще, чем переменного: меньше число гирлянд изоляторов, меньшая затрата металла.
  4. Направление потока мощности можно изменять (реверсивные линии).

Недостатки:

  1. Необходимость сооружения сложных концевых подстанций с большим числом преобразователей напряжения и вспомогательной аппаратуры. Известно, что выпрямители и инверторы сильно искажают форму кривой напряжения на стороне переменного тока. Поэтому приходится ставить мощные сглаживающие устройства, что значительно снижает надежность.
  2. Отбор мощности от линии постоянного тока пока затруднителен.
  3. В линиях постоянного тока требуется, чтобы перед включением были примерно одинаковыми полярность и напряжения по обоим концам.

Таким образом, возможно сделать вывод, что из-за больших затрат к0 (рис.3) строительство линий электропередач постоянного тока (кривая 2) становится экономически целесообразным только при больших расстояниях равных примерно 1000… 1200 км (точка m).

745

Закладки<\p>

Источник: https://energoboard.ru/post/1177/

ЛЭП

Главная > Теория > ЛЭП

На электростанциях вырабатывается электроэнергия. Доставить ее потребителю можно только с помощью проводов и кабелей. Для транспорта электроэнергии служат ЛЭП. Линия электропередачи – это расшифровка аббревиатуры ЛЭП.

В энергетике существует разграничение понятий, что считать ЛЕП. На подстанциях высоковольтное оборудование тоже связывается проводами. Но это не ЛЭП.

Так называются только дальние линии, отходящие с подстанции, начиная от линейного ввода.

Линии электропередачи

Все линии делятся на воздушные и кабельные.  Встречаются кабельно-воздушные (КВЛ). Одновременно по проводам идет передача высокочастотного сигнала для ВЧ-связи, работы защит, аппаратуры СДТУ, с помощью которой осуществляется диспетчерское управление электросетями.

Воздушные ЛЭП

Линии, состоящие из проводов, опор и вспомогательного оборудования, проходящие по воздуху над землей, – это воздушные линии электропередач. Они еще называются ВЛЭП или ВЛ. Участки ВЛ могут проходить по конструкциям мостов, путепроводов.

Основные элементы ВЛ:

  1. Провода. Их изготавливают из меди, алюминия, бывают комбинированные варианты. Иногда их скручивают из нескольких жил. Провода различаются параметрами сечения;
  2. Опоры. Существующие виды: металлические, железобетонные и деревянные. Последние два типа применяются для ВЛ 6-10 кВ.  Металлические опоры делятся на анкерные и промежуточные. Анкерные –ставятся на участках , где сконцентрирована наибольшая механическая нагрузка (при переходах через водоемы, изменении направления) и через определенное расстояние. Промежуточные – применяют на прямых местах трассы;

Угловая опора

  1. Гирлянды изоляторов. Бывают стеклянные, фарфоровые. Служат для изоляции проводов от тела опоры. Провода из соседних пролетов соединяются шлейфами;
  2. Заземляющий контур, грозотрос, разрядники служат для защиты от перенапряжений, возникающих в атмосфере;
  3. Гасители вибрации. Используются в конструкции ВЛ высокого напряжения. Для увеличения эксплуатационного срока ЛЭП необходимо поглощать механические вибрации проводов.

Строить и эксплуатировать ВЛ должен специально обученный персонал на основе ПТЭ (правил технической эксплуатации), ПУЭ (правил устройства электроустановок) и ПОТ (правил по охране труда).

Род тока

Классификация ВЛ в зависимости от рода тока:

  1. ЛЭП постоянного тока. Такие ЛЕП позволяют снизить потери при передаче электроэнергии из-за отсутствия реактивной мощности (емкостной и индуктивной составляющей). Поэтому их применение оправдано при транспортировке электроэнергии между системами на большие дистанции. Но ВЛ дороже в постройке из-за необходимости установки дополнительного оборудования (выпрямителей, инверторов). В развитых странах их широко используют, а в РФ построено всего несколько линий постоянного тока напряжением 400 кВ. Однако именно на постоянном токе работает часть российской контактной сети железнодорожного транспорта напряжением 3кВ;
  2. ЛЭП переменного тока. Практически все ВЛ, образующие энергосистему РФ, работают на переменном токе.

Обслуживание ЛЭП

Класс напряжения

Напряжение ВЛ переменного тока условно подразделяется на:

  1. Ультравысокое – 750, 1150 кВ;
  2. Сверхвысокое – 330, 400, 500 кВ;
  3. Высокое – 110, 150, 220 кВ;
  4. Среднее – 6, 10, 20, 35 кВ;
  5. Низкое – до 1000 В;
  6. Напряжение 27 кВ переменного тока используется для питания частично контактной сети железнодорожного транспорта.

В распределительных сетях такое деление не применяется.

Важно! К каждому классу напряжения применяются определенные правила устройства ВЛ, требования к конструктивному исполнению и безопасной эксплуатации.

Предназначение ЛЭП определяет их другую классификацию:

  1. ВЛ 500 кВ и большего напряжения используются для соединения отдельных частей энергосистемы, разных энергосистем и являются сверхдальними;
  2. В качестве магистральных ЛЕП служат линии 220, 330 кВ, связывающие крупные питающие центры. Они также могут быть межсистемными;
  3. ВЛ 35, 110, 150 кВ связывают менее значимые питающие центры в границах территориальных районов электросетей, используются для межрайонных связей. Относятся к распределительным ВЛ;
  4. ЛЭП до 6-10 кВ подводят напряжение к распределительным пунктам и далее по низковольтным линиям непосредственно к потребителям.

ВЛ 6-10 кВ

Установленный режим работы нейтралей

От заземления нейтралей зависит работа защит ВЛ, обеспечивающих отключение оборудования при коротких замыканиях. Всего существует три режима работы:

  1. С изолированной нейтралью. Используются в сетях до 35 кВ. Средняя точка трансформаторов не соединяется с заземляющим устройством. Такие ВЛ не будут отключаться защитами при однофазных КЗ (обрыв и падение одного провода на землю). Для компенсации емкостных токов оставшихся фаз применяются дугогасящие реакторы;
  2. С эффективно заземленной нейтралью. Режим практически реализуется частичным заземлением нейтрали (не на всех подстанциях сети) и гарантирует отключение однофазных и других видов КЗ на высоковольтных линиях электропередачи. Применяется для сетей 110 кВ;
  3. С глухозаземленной нейтралью. Применяется во всех сетях до 1000 В, а также 220 кВ и выше.

Важно! В сетях с изолированной нейтралью провод ВЛ может находиться на земле под напряжением. Приближаться к любым лежащим проводам запрещается.

Состояние ЛЭП  и электрооборудования

Характеристика ЛЭП по состоянию, в котором она находится:

  1. В работе – когда ВЛ замкнута с обеих сторон выключателями, и по ней протекает ток нагрузки;
  2. В резерве;
  3. В ремонте;
  4. В консервации.

ЛЭП, требующая аварийного ремонта

Ремонты ВЛ могут быть аварийные, текущие, капитальные. Когда линию реконструируют, то заменяют полностью или частично провода в пролетах, грозотросы, сами опоры.

Охранная зона ЛЭП

Границы охранной зоны устанавливаются для каждого класса напряжения линии. Это необходимо для исключения каких-либо действий, угрожающих стабильной работе ЛЭП или способных ее повредить.

Пределы охранных зон для ВЛ (отсчитываются от вертикального профиля линии по обе стороны):

  • до 1000 В – 2 м;
  • 20 кВ – 10 м;
  • 35 кВ – 15 м;
  • 110 кВ – 20 м;
  • 220 кВ – 25 м;
  • 550 кВ – 30 м;
  • 750 кВ – 40 м;
  • 1150 кВ – 55 м.

В этих границах, кроме продолжительного пребывания людей, запрещается:

  1. Высаживать деревья, кустарники, другие растения, в том числе разрабатывать огороды;
  2. Устраивать импровизированные свалки;
  3. Проводить земляные работы;
  4. Затруднять подход, проезд к ВЛ путем возведения заборов и других построек.

Незаконное строительство в охранной зоне ЛЭП

Важно! Все строительные работы в охранной зоне ВЛ и в непосредственной близости от нее необходимо согласовывать с ответственными лицами предприятия, обслуживающего линию.

Кабельные линии

Мощность электрического тока

КЛ, что расшифровывается как кабельные линии, служат также для транспорта электроэнергии. Представляют собой силовые кабели, проложенные в земле, подземных и наземных сооружениях, под водой. Для их соединения используются муфты.

Кабельные линии электропередач имеют следующие преимущества:

  • защищены от влияния погодного фактора (грозовых разрядов, сильных ветров);
  • не боятся падений деревьев;
  • имеют низкую опасность для людей и животных;
  • занимают меньшую территорию.

По классу напряжения кабельные линии электропередач подразделяются так же, как и воздушные.

Виды изоляции кабелей

  1. Резиновая. Изготавливается на основе натуральных и синтетических материалов. Такие кабели отличаются гибкостью, но имеют низкий эксплуатационный срок;
  2. Полиэтиленовая. Применяется для КЛ, прокладываемых в агрессивных средах.

    Невулканизированный полиэтилен боится высоких температур;

  3. ПВХ. Отличается низкой стоимостью и высокой эластичностью. Кабели с ПВХ широко используются для КЛ всех классов напряжения;
  4. Бумажная. Для силовых кабелей требуется пропитка такой изоляции особенным составом.

    В настоящее время применяется редко;

  5. Фторопластовая. Самая устойчивая к любым повреждениям;
  6. Маслонаполненные кабели. Требуют аппаратуры для поддержания давления масла, обладают высокой пожароопасностью. Сейчас не производятся.

    Существующие КЛ демонтируются, заменяются кабелями с более современными и надежными видами изоляции.

Силовые кабели

Виды кабельных сооружений

Для прокладки КЛ используются различные виды сооружений, где кабели, каждый из которых снабжается идентификационной биркой, находятся в открытом доступе для обслуживания:

  1. Каналы. Это короба, сооруженные из железобетонных плит, верхняя крышка которых снимается. Находятся они, как правило, на поверхности земли;
  2. Тоннели, выстраиваемые под землей. Размеры их таковы, что там свободно может передвигаться человек. Кабели уложены по боковым стенкам;
  3. Кабельный этаж возводят на подстанциях. Представляет собой помещение, часто полуподвального типа, по периметру которого проложены кабели;
  4. Эстакада. Сооружение открытого типа, находящееся непосредственно на земле, фундаменте или опорах, по дну которого проходят кабели с муфтами;
  5. Галерея. То же, что и эстакада, только закрытая полностью или с нескольких сторон;
  6. Двойной пол. Пространство под полом, закрытое плитами, которые можно снимать для проведения работ. Используется для низковольтных кабелей, в основном, в помещениях релейных залов подстанций;
  7. Кабельный блок. Подземные трубы или каналы, где размещаются кабели, для прокладки которых используются камеры с входом через надземный люк. Такая камера называется кабельным колодцем.

Кабельный туннель

Многообразие применяемых ЛЭП позволяет передавать электроэнергию на любые расстояния и по природным ландшафтам разнообразной сложности. При проектировании каждой линии учитывается ее назначение, протекающие токи нагрузки, стоимость оборудования для строительства и эксплуатации.

Видео

Источник: https://elquanta.ru/teoriya/lehp.html

Ссылка на основную публикацию