Электропроводность веществ

И электропроводность вещества

Электрический ток.В веществе, помещенном в электрическое поле, под действием сил поля возникает процесс движения эле­ментарных носителей электричества — электронов или ионов. Дви­жение этих электрически заряженных частиц материи называют электрическим током.

За единицу силы тока принят ампер (А). Это такой ток, при кото­ром через поперечное сечение проводника каждую секунду проходит количество электричества, равное 1 Кл. Силу тока иногда измеряют тысячными долями ампера — миллиамперами (мА) или миллион­ными долями ампера — микроамперами (мкА), а при больших зна­чениях— тысячами ампер — килоамперами (кА), в формулах ток обозначают буквой / (/).

В электротехнике широко применяют как постоянный, так и пе­ременный ток. Постоянным называют ток, значение и направление которого в любой момент времени остаются неизменными (рис. 9, а). Токи, значение и направление которых не остаются постоянными, называют изменяющимися, или переменными.

Чаще всего в электро­технических устройствах используют ток, изменяющийся по сину­соидальному закону, который получают от генераторов перемен­ного тока и трансформаторов (рис. 9, б). От выпрямителей полу­чают пульсирующий ток (рис. 9, в), неизменный по направлению, но меняющийся по величине.

Электропроводность.Свойство вещества проводить электричес­кий ток под действием электрического поля называют электропро­водностью. Электропроводность различных веществ зависит от концентрации свободных (т. е.

не связанных с атомами, молекулами или кристаллической структурой) электрически заряженных частиц. Чем больше концентрация этих частиц, тем больше электропро­водность данного вещества.

Все вещества в зависимости от электро­проводности делят на три группы: проводники, диэлектрики (изолирующие материалы) и полупроводники.

Проводники обладают очень высокой электропроводностью. Существуют два рода проводников, которые различаются физической природой протекания электрического тока. К проводникам первого рода относятся металлы.

Прохождение по ним тока обусловлено движением свободных электронов, вследствие чего их называют проводниками с электронной проводимостью. Проводниками вто­рого рода являются растворы кислот, щелочей и солей (в основном водные), называемые электролитами.

Прохождение тока через электролиты связано с движением электрически заряженных частей молекул — положительных и отрицательных ионов, т. е. электро­литы являются проводниками с ионной проводимостью.

Имеются также вещества со смешанной проводимостью, в ко­торых ток переносится электронами и ионами. К ним относятся, например, газы и пары в ионизированном состоянии.

Физическая природа электропроводности ме­таллов. Высокая электропроводность металлов хорошо объясня­ется на основе электронной теории. Согласно этой теории валент­ные электроны сравнительно слабо связаны с их ядрами.

Поэтому они свободно перемещаются между атомами, переходя из сферы действия одного атома в сферу действия другого и заполняя про­странство между ними наподобие газа. Эти электроны принято называть свободными.

Свободные электроны / находятся в состоянии беспорядочного движения (рис. 10, а).

Однако если внести металлический провод­ник в электрическое поле, то свободные электроны под действием сил поля начнут перемещаться в сторону положительного полюса (рис. 10, б), создавая электрический ток.

Таким образом, электри­ческим током в металлических проводниках называется упорядочен­ное (направленное) движение свободных электронов.

Металлоиды имеют на внешней оболочке большое количество электронов и они прочно удерживаются около своих ядер. Поэтому металлоиды, как правило, являются диэлектриками.

Скорость прохождения тока.Электрическое поле распростра­няется в пространстве с огромной скоростью — 300 000 км/с, т. е. со скоростью света.

С такой же скоростью проходит и электрический ток в проводнике.

Однако каждый отдельный электрон движется в среднем по проводнику со скоростью несколько миллиметров или сантиметров в секунду (эта скорость зависит от напряженности электрического поля).

Чем же объяснить такую скорость распространения электри­ческого тока? Причина в том, что каждый электрон находится в об­щем электронном потоке, заполняющем проводник, и при прохож­дении электрического тока испытывает непрерывное воздействие со стороны соседних электронов.

Поэтому, хотя сам электрон дви­жется медленно, скорость передачи движения от одного электро­на к другому (скорость распространения электрической энергии) будет огромна.

Например, при включении рубильника на электро­станции практически мгновенно появляется ток в каждом участке электрической цепи целого города, несмотря на незначительную скорость движения электронов.



Источник: https://infopedia.su/16x35db.html

Электрический ток и электропроводность вещества

При некоторых условиях для нейтрального атома (повышение температуры), этот атом теряет электрон, превращаясь в положительный ион. Оторвавшийся электрон может присоединиться к соседнему атому, образуя отрицательный ион.

Если такое вещество поместить в электрическое поле, то под действием сил поля возникает процесс движения свободных электронов или ионов в направлении сил поля, получивший название электрического тока.

Свойство вещества проводить электрический ток под действием электрического поля называется электропроводностью.

Электропроводность вещества зависит от количества свободных, не связанных с атомами, электрически заряженных частиц. Чем выше их концентрация, тем электропроводность больше.

Все вещества в зависимости от электропроводности делятся на проводники, полупроводники и диэлектрики.

Проводники обладают высокой электропроводностью. Делятся на два класса:

К 1 классу относятся металлы и их сплавы.

В металлах электроны, расположенные на внешних орбитах, слабо связаны с ядрами атомов, часть электронов перемещается между атомами, заполняя пространство между ними и находятся в беспорядочном движении (см.рис.

1,4). Однако если металлический проводник внести в электрическое поле, то свободные электроны под действием сил поля начнут перемещаться в сторону положительного заряда (см.рис.

1,4), создавая электрический ток.

Рис. 1.4. Свободное и упорядоченное движение электронов

Диэлектрические вещества имеют на внешней орбите большое количество электронов, но они жестко связаны со своими ядрами.

Поэтому диэлектрики не являются проводниками тока.

К проводникам 2 класса относятся водные растворы кислот, солей и щелочей.

Электрическая цепь. Э.Д.С.

Рис. 1.5. Электрическая цепь

Если два разноименно заряженных тела соединить проводником, то свободные электроны проводника и этих тел придут в движение и возникнет электрический ток.

Ток по проводнику будет протекать до тех пор, пока напряжение между ними не станет равным нулю.

Для обеспечения непрерывного движения электронов по проводнику необходимо постоянно поддерживать заряды этих тел, то есть обеспечивать разность потенциалов на концах проводника. Для этого применяются источники электрической энергии.

Причину, вызывающую упорядоченное движение электрических зарядов по цепи, называют Э.Д.С. Э.Д.С. обозначается буквой «Е» и измеряется в вольтах.

К источникам Э.Д.С. относятся генераторы, аккумуляторы, гальванические элементы.

Источник электрической энергии, потребитель и провода образуют замкнутую электрическую цепь.

За направление тока принято направление от «+» к «-«.

Сила тока (I)

Силой тока служит величина тока, измеряемая количеством электричества, которое проходит через поперечное сечение проводника за 1 сек.

I = Q / t, A

Q — заряд, Кл

t — время, сек

Ток измеряется в амперах (А). Направление тока указывается стрелкой.

Более мелкие единицы измерения тока

1 миллиампер — 10-3 А

1 микроампер — 10-6 А

Более крупная единица измерения тока

1 килоампер = 103 А

Сопротивление (R)

При движении свободных электронов в проводнике, под действием сил электрического поля, они сталкиваются на своем пути с атомами вещества и отдают им часть своей энергии.

Эта энергия, в результате столкновений, рассеивается в виде тепла и нагревает проводник.

Электроны , сталкиваясь с частицами вещества, преодолевают сопротивление движению, то есть проводники обладают электрическим сопротивлением.

Если сопротивление проводника велико, то проводник может раскалиться (утюг) и наоборот.

Сопротивление обозначается буквой R и измеряется в омах (Ом).

Более крупная единица измерения

1 килоом = 103 Ом

1 мегаом = 106 Ом

Всякий проводник обладает проводимостью, то есть способностью проводить электрический ток.

Проводимость есть величина обратная сопротивлению.

G = 1/R, (Сименс).

О способности отдельных веществ проводить электрический ток судят по его удельному сопротивлению ρ (ро)

ρ = Ом, мм2/м

Сопротивление проводника определяется по формуле

R = ρ · ℓ / S, Ом

ℓ — длина проводника , м

S — сечение проводника, мм2

Провода из металлов (меди, алюминия) с наименьшим сопротивлением широко применяются для соединения потребителей электрической энергии с генераторами.

Для изготовления обмоток нагревательных элементов и реостатов применяют сплавы с большим удельным сопротивлением (нихром, фехраль).

На подвижном составе применяются сопротивления с целью регулирования, уменьшения или ограничения тока цепи.

Емкость (С)

Электрические заряды в цепи могут не только перемещаться по её элементам, но также накапливаться в них, создавая запас энергии

Wэ = C · U2 / 2

где U — напряжение на элементе электрической цепи, В

С — емкость, Ф

Электрической ёмкостью (или просто ёмкостью) C называется коэффициент, определяющий запас накопленной энергии. Таким образом, ёмкость — характеристика проводника, мера его способности накапливать электрический заряд.

Величина ёмкости участка электрической цепи зависит от электрических свойств окружающей среды, а также от формы и геометрических размеров проводников, в которых накапливаются заряды.

Исторически первые накопители представляли собой плоские проводники, разделённые тонкой прослойкой изоляционного материала.

Совокупность проводников, предназначенных для накопления энергии электрического поля, называется конденсатором. Чем больше площадь проводников и чем меньше толщина изолирующей прослойки, тем больше, при прочих равных условиях, величина их ёмкости.

Ёмкость определяется как отношение величины электрического заряда на конденсаторе к величине напряжения на нем

С = Q / U

и измеряется в фарадах (Ф).

Электрические цепи

Источник: https://megaobuchalka.ru/7/14952.html

Электрическая проводимость различных веществ. Электронная проводимость металлов — Класс!ная физика

«Физика — 10 класс»

Как движутся электроны в металлическом проводнике, когда в нём нет электрического поля?
Как изменяется движение электронов, когда к металлическому проводнику прикладывают напряжение?

Электрический ток проводят твёрдые, жидкие и газообразные тела. Чем эти проводники отличаются друг от друга?

Вы познакомились с электрическим током в металлических проводниках и с установленной экспериментально вольт-амперной характеристикой этих проводников — законом Ома.

Наряду с металлами хорошими проводниками, т. е. веществами с большим количеством свободных заряженных частиц, являются водные растворы или расплавы электролитов и ионизованный газ — плазма. Эти проводники широко используются в технике.

В вакуумных электронных приборах электрический ток образуют потоки электронов.

Металлические проводники находят самое широкое применение в передаче электроэнергии от источников тока к потребителям. Кроме того, эти проводники используются в электродвигателях и генераторах, электронагревательных приборах и т. д.

Кроме проводников и диэлектриков (веществ со сравнительно небольшим количеством свободных заряженных частиц), имеется группа веществ, проводимость которых занимает промежуточное положение между проводниками и диэлектриками. Эти вещества не настолько хорошо проводят электричество, чтобы их назвать проводниками, но и не настолько плохо, чтобы их отнести к диэлектрикам. Поэтому они получили название полупроводников.

Долгое время полупроводники не играли заметной практической роли. В электротехнике и радиотехнике применяли исключительно различные проводники и диэлектрики. Положение существенно изменилось, когда сначала была предсказана теоретически, а затем обнаружена и изучена легкоосуществимая возможность управления электрической проводимостью полупроводников.

Нет универсального носителя тока. В таблице приведены носители тока в различных средах.

Электронная проводимость металлов.

Начнём с металлических проводников. Вольт-амперная характеристика этих проводников нам известна, но пока ничего не говорилось о её объяснении с точки зрения молекулярнокинетической теории.

Носителями свободных зарядов в металлах являются электроны. Их концентрация велика — порядка 10 28 1/м 3 .

Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью порядка 10-4 м/с.

Экспериментальное доказательство существования свободных электронов в металлах.

Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Мандельштама и Папалекси (1913), Стюарта и Толмена (1916). Схема этих опытов такова.

На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис. 16.1). К концам дисков при помощи скользящих контактов подключают гальванометр.

Катушку приводят в быстрое вращение, а затем резко останавливают.

После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции, и, следовательно, в катушке возникает электрический ток.

Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.

Направление тока в этом опыте говорит о том, что он создаётся движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т. е. |q|/m.

Поэтому, измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным 1,8 • 1011 Кл/кг.

Эта величина совпадала с отношением заряда электрона к его массе е/m, найденным ранее из других опытов.

Движение электронов в металле.

Свободные электроны в металле движутся хаотично. При подключении проводника к источнику тока в нём создаётся электрическое поле, и на электроны начинает действовать кулоновская сила= qe. Под действием этой силы электроны начинают двигаться направленно, т. е.

на хаотичное движение электронов накладываетсяСкорость направленного движения увеличивается в течение некоторого времени t0 до тех пор, пока не произойдёт столкновение электронов с ионами кристаллической решётки. При этом электроны теряют направление движения, а затем опять начинают двигаться направленно.

Таким образом, скорость направленного движения электрона изменяется от нуля до некоторого максимального значения, равногоВ результате средняя скорость упорядоченного движения электронов оказывается равнойт. е.

Читайте также:  Основные виды релейной защиты

пропорциональной напряжённости электрического поля в проводнике: υ ~ Е и, следовательно, разности потенциалов на концах проводника, так какгде l — длина проводника.

Сила тока в проводнике пропорциональна скорости упорядоченного движения частиц (см. формулу (15.2)). Поэтому можем сказать, что сила тока пропорциональна разности потенциалов на концах проводника: I ~ U.

В этом состоит качественное объяснение закона Ома на основе электронной теории проводимости металлов.

Построить удовлетворительную количественную теорию движения электронов в металле на основе законов классической механики невозможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания этого движения.

Этот факт подтверждает, например, зависимость сопротивления от температуры.

Согласно классической теории металлов, в которой движение электронов рассматривается на основе второго закона Ньютона, сопротивление проводника пропорциональноэксперимент же показывает линейную зависимость сопротивления от температуры.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»

Электрический ток в различных средах — Физика, учебник для 10 класса — Класс!ная физика

Электрическая проводимость различных веществ. Электронная проводимость металлов — Зависимость сопротивления проводника от температуры. Сверхпроводимость — Электрический ток в полупроводниках.

Собственная и примесная проводимости — Электрический ток через контакт полупроводников с разным типом проводимости. Транзисторы — Электрический ток в вакууме. Электронно-лучевая трубка — Электрический ток в жидкостях. Закон электролиза — Электрический ток в газах.

Несамостоятельный и самостоятельный разряды — Плазма — Примеры решения задач по теме «Электрический ток в различных средах»

Источник: http://class-fizika.ru/10_a150.html

Электропроводность металлов

Классическая теория электропроводности металлов зародилась в начале ХХ века. ЕЕ основоположником стал немецкий физик Карл Рикке. Он опытным путем установил, что прохождение заряда через металл не сопряжено с переносом атомов проводника, в отличие от жидких электролитов. Однако это открытие не объяснило, что именно является носителем электрических импульсов в структуре металла.

Ответить на это вопрос позволили опыты ученых Стюарта и Толмена, проведенные в 1916 году. Им удалось установить, что за перенос электричества в металлах отвечают мельчайшие заряженные частицы — электроны.

Это открытие легло в основу классической электронной теории электропроводности металлов. С этого момента началась новая эпоха исследований металлических проводников.

Благодаря полученным результатам мы сегодня имеем возможность пользоваться бытовыми приборами, производственным оборудованием, станками и многими другими устройствами.

Как отличается электропроводность разных металлов?

Электронная теория электропроводности металлов получила развитие в исследованиях Паулю Друде. Он сумел открыть такое свойство как сопротивление, которое наблюдается при прохождении электрического тока через проводник.

В дальнейшем это позволит классифицировать разные вещества по уровню проводимости. Из полученных результатов легко понять, какой металл подойдет для изготовления того или иного кабеля.

Это очень важный момент, так как неправильно подобранный материал может стать причиной возгорания в результате перегрева от прохождения тока избыточного напряжения.

Наибольшей электропроводностью обладает металл серебро. При температуре +20 градусов по Цельсию она составляет 63,3*104 сантиметров-1. Но изготавливать проводку из серебра очень дорого, так как это довольно редкий металл, который используется в основном для производства ювелирных и декоративных украшений или инвестиционных монет.

Металл, обладающий самой высокой электропроводностью среди всех элементов неблагородной группы — медь. Ее показатель составляет 57*104 сантиметров-1 при температуре +20 градусов по Цельсию.

Медь является одним из наиболее распространенных проводников, которые используются в бытовых и производственных целях. Она хорошо выдерживает постоянные электрические нагрузки, отличается долговечностью и надежностью.

Высокая температура плавления позволяет без проблем работать долгое время в нагретом состоянии.

По распространенности с медью может конкурировать только алюминий, который занимает четвертое место по электропроводности после золота.

Он используется в сетях с невысоким напряжением, так как имеет почти вдвое меньшую температуру плавления, чем медь, и не способен выдерживать предельные нагрузки.

С дальнейшим распределением мест можно ознакомиться, взглянув на таблицу электропроводности металлов.

Стоит отметить, что любой сплав обладает гораздо меньшей проводимостью, чем чистое вещество. Это связано со слиянием структурной сетки и как следствие нарушением нормального функционирования электронов.

Например, при производстве медного провода используется материал с содержанием примесей не более 0,1%, а для некоторых видов кабеля этот показатель еще строже — не более 0,05%.

Все приведенные показатели являются удельной электропроводностью металлов, которая рассчитывается как отношение между плотностью тока и величиной электрического поля в проводнике.

Классическая теория электропроводности металлов

Основные положения теории электропроводности металлов содержат шесть пунктов. Первый: высокий уровень электропроводности связан с наличием большого числа свободных электронов. Второй: электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное.

Третий: сила тока, проходящего через металлический проводник, рассчитывается по закону Ома.

Четвертый: различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов.

Пятый: электрический ток в цепи возникает мгновенно после начала воздействия на электроны. Шестой: с увеличением внутренней температуры металла растет и уровень его сопротивления.

Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра.

В этот момент металл не способен самостоятельно воспроизводить электрические заряды.

Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.

Это связано с тем, что слабеют молекулярные связи в кристаллической решетке, элементарные частицы начинают вращаться в еще более хаотичном порядке, поэтому построение электронов в цепь усложняется.

Поэтому необходимо принимать меры по недопущению перегрева проводников, так как это негативно сказывается на их эксплуатационных свойствах. Механизм электропроводности металлов невозможно изменить ввиду действующих законов физики.

Но можно нивелировать негативные внешние и внутренние воздействия, которые мешают нормальному протеканию процесса.

Металлы с высокой электопроводностью

Электропроводность щелочных металлов находится на высоком уровне, так как их электроны слабо привязаны к ядру и легко выстраиваются в нужной последовательности. Но эта группа отличается невысокими температурами плавления и огромной химической активностью, что в большинстве случаев не позволяет использовать их для изготовления проводов.

Металлы с высокой электропроводностью в открытом виде очень опасны для человека. Прикосновение к оголенному проводу приведет к получению электрического ожога и воздействию мощного разряда на все внутренние органы. Зачастую это влечет мгновенную смерть. Поэтому для безопасности людей используются специальные изоляционные материалы.

В зависимости от сферы применения они могут быть твердыми, жидкими и газообразными. Но все типы предназначены для одной функции — изоляции электрического тока внутри цепи, чтобы он не мог оказывать воздействие на внешний мир. Электропроводность металлов используется практически во всех сферах современной жизни человека, поэтому обеспечение безопасности является первоочередной задачей.

Источник: https://promplace.ru/vidy-metallov-i-klassifikaciya-staty/electroprovodnost-metallov-1479.htm

Большая Энциклопедия Нефти и Газа

Cтраница 1

Электропроводность веществ первых 6 групп о зависит от темп-ры Т и подсчитывается но ф-ле а О ( ехр ( — — Е / кТ), где а0 — темповая электропроводность; В — энергия активации проводимости; к — постоянная Больцмана; Еф — порог, при к-ром впервые наблюдается фотопроводимость.  [1]

Электропроводность веществ обусловлена движением электронов.  [2]

Электропроводность вещества зависит от концентрации носителей тока и их подвижности.  [3]

Электропроводность вещества связана с присутствием заряженных частиц ( электронов, ионов), способных перемещаться под действием электрического поля.  [4]

Электропроводность вещества определяется как свойство проводить неизменяющийся во времени электрический ток под действием неизменяющегося во времени электрического поля. Это свойство вещества является одним из основных свойств, которые использует электротехника. Рассмотрим вначале кратко физико-химические основы электропроводности.  [5]

Электропроводность вещества определяется количеством ионов, которые пересекут площадь поперечного сечения проводника в единицу времени. Это количество зависит от ряда факторов, важнейшими из которых являются следующие.  [6]

Схема электрической проводимости раствора электролита.  [7]

Электропроводность вещества определяется количеством ионов, которые пересекут площадь поперечного сечения проводника в единицу времени. Это количество зависит от разных условий, важнейшими из которых являются следующие.  [8]

Электропроводность веществ различных классов изменяется по-разному в зависимости от окружающей температуры. У полупроводников электропроводность с повышением температуры увеличивается, а у проводников ( металлов) — уменьшается.  [10]

Еслиэлектропроводность веществ не столь велика, чтобы не обнаруживать поляризационные эффекты, то их называют несовершенными диэлектриками или несовершенными изолирующими средами.  [11]

Характерэлектропроводности вещества зависит от природы свободных зарядов.  [12]

Характерэлектропроводности вещества зависит от природы свободных зарядов.  [13]

Приборы для изучения электропроводности ( из стеклянной.  [14]

Для демонстрацииэлектропроводности веществ различной концентрации ( рис. 3 — 20, б) в две трубки наливают концентрированную уксусную кислоту. В одну трубку подливают при размешивании воду. Лампочка, соединенная с этой трубкой, загорается.  [15]

Страницы:      1    2    3    4

Источник: http://www.ngpedia.ru/id614109p1.html

Электропроводность (физич.)

Навигация:
Библиотека DJVU
Photogallery
БСЭ

Статистика: Электропроводность, электрическая проводимость, проводимость, способность тела пропускать электрический ток под воздействием электрического

Зависимость электропроводности s некоторых веществ от абсолютной температуры Т. Металлы: 1 — медь, 2 — свинец (ниже 7,3 К становится сверхпроводящим); полупроводники: 3 — графит, 4 — чистый германий, 5 — чистый кремний; ионные проводники: 6 — хлористый натрий, 7 — стекло.

поля, а также физическая величина, количественно характеризующая эту способность. Тела, проводящие электрический ток, называются проводниками, в отличие от изоляторов (диэлектриков). Проводники всегда содержат свободные (или квазисвободные) носители заряда — электроны, ионы, направленное (упорядоченное) движение которых и есть электрический ток. Электропроводность (физич.) большинства проводников (металлов, полупроводников, плазмы)обусловлена электронами (в плазме небольшой вклад в Электропроводность (физич.) вносят также ионы). Ионная Электропроводность (физич.) свойственна электролитам.

  Сила электрического тока I зависит от приложенной к проводнику разности потенциалов V, которая определяет напряжённость электрического поля Е внутри проводника. Для изотропного проводника постоянного сечения Е = —V/L, где L — длина проводника.

Плотность тока j зависит от значения Е в данной точке и в изотропных проводниках совпадает с ним по направлению. Эта зависимость выражается Ома законом: j = sЕ; постоянный (не зависящий от Е) коэффициент s и называется Электропроводность (физич.), или удельной Электропроводность (физич.

) Величина, обратная s, называется удельным электрическим сопротивлением: r = 1/s. Для проводников разной природы значения s (и r) существенно различны (см. рис.). В общем случае зависимость j от Е нелинейна, и s зависит от Е; тогда вводят дифференциальную Электропроводность (физич.

) s = dj/dE. Электропроводность (физич.) измеряют в единицах (ом·см)-1 или (в СИ) в (ом·м)-1.

В анизотропных средах, например в монокристаллах, s — тензор второго ранга, и Электропроводность (физич.) для разных направлений в кристалле может быть различной, что приводит к неколлинеарности Е и j.

  В зависимости от величины Электропроводность (физич.) все вещества делятся на проводники с s > 106 (ом·м)—1, диэлектрики с s < 10—8(ом·м)—1и полупроводники с промежуточными значениями s. Это деление в значит. мере условно, т. к.

 Электропроводность (физич.) меняется в широких пределах при изменении состояния вещества. Электропроводность (физич.) s зависит от температуры, структуры вещества (агрегатного состояния, дефектов и пр.

) и от внешних воздействий (магнитного поля, облучения, сильного электрического поля и т. п.).

  Мерой «свободы» носителей заряда в проводнике служит отношение ср.

времени свободного пробега (t) к характерному времени столкновения t: t/tcт >> 1; чем больше это отношение, тем с большей точностью можно считать частицы свободными.

Методы молекулярно-кинетической теории газов позволяют выразить sчерез концентрацию (n) свободных носителей заряда, их заряд (е) и массу (m) и время свободного пробега:

где m — подвижность частицы, равная E/vcp = et/m, vcp — ср. скорость направленного движения. Если ток обусловлен заряженными частицами разного сорта «i», то.

Подвижность электронов (вследствие их малой массы) настолько больше ионной, что ионная Электропроводность (физич.) существенна только в случае, когда свободные электроны практически отсутствуют.

Перенос массы под воздействием тока, напротив, связан с движением ионов.

  Характер зависимости Электропроводность (физич.) от температуры Т различен у разных веществ.

У металлов зависимость s(Т) определяется в основном уменьшением времени свободного пробега электронов с ростом Т: увеличение температуры приводит к возрастанию тепловых колебаний кристаллической решётки, на которых рассеиваются электроны, и sуменьшается (на квантовом языке говорят о столкновении электронов с фононами). При достаточно высоких температурах, превышающих Дебая температуру qD, Электропроводность (физич.) металлов обратно пропорциональна температуре: s ~ 1/Т; при Т > kT удовлетворить трудно, а в полупроводниках, электролитах и особенно в плазме явления в сильных электрических полях весьма существенны.

  В переменном электромагнитном поле s зависит от частоты (w) и от длины волны (l) поля (временная и пространственная дисперсия, проявляющиеся при w ³ t-1, l £ l). Характерным свойством хороших проводников является скин-эффект (даже при w<\p>

Источник: http://bse.sci-lib.com/article126142.html

ПОИСК

    Электропроводность расплавленной ионной соли обычно на один-два порядка превышает электропроводность водного раствора того же электролита.

Читайте также:  Жидкие диэлектрики

Так, например, удельная электропроводность расплава КС1 при 800°С равна 24,2 См/м, тогда как удельная электропроводность водного раствора хлорида калия Проводимость расплавов остается, однако, на 3—4 порядка ниже проводимости жидких металлов, например ртути.

Для сравнения электропроводности различных расплавленных солей, как и водных растворов, используют эквивалентную электропроводность.

Однако при рассмотрении расплавов возникает проблема, связанная с сильной зависимостью Л от температуры и с необходимостью выбора соответствующей температуры сравнения, тем более что температуры плавления разных веществ существенно отличны.

Особенно резкое изменение электропроводности происходит вблизи температуры плавления, так как при плавлении разрушается (диссоциирует) ионная решетка. Обычно сравнивают величины Л при абсолютных температурах, превышающих на 10% абсолютную температуру плавления. При этом, по-видимому, наступает практически полная диссоциация кристаллической решетки. [c.90]

    Электропроводность расплавов ионных веществ приблизительно в 10 раз выще электропроводности концентрированных водных растворов истинных электролитов. [c.90]

    Опыт 2. Электропроводность расплавов и растворов, а. Поместите в тигель немного нитрата натрия, установите тигель в прибор для обнаружения электропроводности (рис. 42), включите полностью реостат и нагревайте тигель на сильном пламени горелки.

При первом появлении признаков плавления соли уменьшите нагревание и постепенно выключайте реостат. Как только расплав начнет проводить ток, прекратите опыт (выньте электроды), чтобы не пережечь прибор. Заметьте, что расплавы ионных веществ обладают хорошей электропроводностью.

[c.71]

    Физико-химический анализ — это учение о зависимости свойств сложных систем от их состава. Для двухкомпонентных систем обычно строят диаграмму плавкости (кристаллизации), на которой по оси ординат откладывают температуру, а по оси абсцисс состав в весовых или атомных процентах.

В этих случаях берут два вещества и готовят смеси разного состава. Смеси расплавляют и изучают ход кривых кристаллизации расплава во времени, т. е. выполняют термографический анализ. По кривым строят диаграмму плавкости, характеризующую индивидуальность получаемых образцов твердых фаз постоянного или переменного состава.

Изучение электропроводности, плотности, твердости и пр. в зависимости от состава фаз, использование металлографических, рентгенографических и других методов исследования позволяет углубить знание о числе фаз в системе и об их строении.

Фазовая характеристика твердых фаз совершенно необходима, так как, по Курнакову, носителем свойств соединения в твердом состоянии является не молекула, а фаза. [c.34]

    Совсем особые свойства имеют вещества с дефектными структурами. Для примера рассмотрим электропроводность AgJ,. Это вещество известно iB трех модификациях. Две низкотемпературные модификации принадлежат к структурным типам сфалерита и вюртцита.

Высокотемпературная модификация, устойчивая от 145,6° С до температуры плавления (552°С), имеет дефектную структуру. Атомы (ионы) йода располагаются по узлам центрированной кубической упаковки, а атомы (ионы) серебра располагаются в пустотах.

Поскольку число пустот в ячейке больше числа шаров упаковки, катионы имеют возможность передвигаться по всей решетке, подобно жидкости или газу. Эти осо-бен.ности структуры и создают особые свойства веществ.

Электропроводность модификации AgJ типа ZnS вблизи температуры превращения равна 0,00033 (при 142,4°). Превращение AgJ в высокотемпературную модификацию сопровождается скачкообразным повышением электропроводности в несколько тысяч раз (1,31, при 146,5°).

Далее, с повышением температуры электро проводность увеличивается, доходя вблизи температуры плавления до 2,64. Интересно отметить, что эта величина превосходит величину электропроводности расплава (2,36 при 554°С). [c.238]

    Исследованию процессов комплексообразования в неводных растворах были посвящены работы школы В. А. Плотникова, которые успешно развиваются и сейчас. Исследовалась электропроводность и другие свойства растворов в жидких галоидах, галоидоводородах, в расплавах солей и т. д.

Работы этой школы показали, что в результате химического взаимодействия образование электролитных растворов возможно и в тех случаях, когда растворенные вещества в смеси образуют солеобразные продукты. Кроме того, большой заслугой этой школы является исследование электропроводности концентрированных растворов и расплавов.

Ее работами было также показано большое значение химического взаимодействия. [c.10]

    При кристаллизации веществ, обладающих в жидком состоянии достаточно высокой электропроводностью (расплавы металлов), [c.41]

    Электролиз расплавленных солей проводится при температурах, незначительно превышающих температуру их кристаллизации. При таких температурах строение расплавов сохраняет некоторое сходство со строением твердых веществ. Такие свойства веществ, как объем и теплоемкость, упорядоченность кристаллической структуры и др., при плавлении изменяются несущественно.

Это объясняется тем, что характер химической связи кристаллических веществ в твердом состоянии-—ионная, ковалентная, металлическая, — сохраняется и для веществ в расплавленном виде. Однако различие существует. При плавлении изменяется характер движения частиц.

При повышении температуры степень неупорядоченности, имеющаяся в твердых кристаллах, возрастает и соответственно увеличивается электропроводность. Одновременно нарушается порядок расположения частиц в твердом веществе, т. е. уменьшается дальний порядок.

При достижении температуры плавления дальний порядок полностью исчезает и вещество переходит в жидкость, но ближайшее окружение иона в жидком виде — так называемый ближний порядок — остается таким же, как и в твердом теле.. [c.465]

    При взаимодействии двух простых твердых веществ — Л, обладающего хорошей электропроводностью и легко реагирующего с водой, и с характерной окраской, легко возгоняющегося и плохо растворимого в воде,— образуется новое твердое вещество белого цвета. При электролизе расплава последнего вновь получаются исходные вещества Л и . Определите, что они собой представляют. [c.52]

    Однако электролиты обладают способностью проводить электрический ток не только в растворе. В твердом состоянии ионные кристаллы не проводят электрический ток, так как в них электроны прочно удерживаются в атомных орбитах отдельных ионов.

Однако в расплаве кристаллические вещества проводят электрический ток. причем электропроводность осуществляется за счет переноса ионов (опыт 22).

То, что электропроводность электролитов всегда осуществляется именно за счет переноса ионов, наглядно демонстрируется в опытах 25 и 26. [c.56]

    Еще 35 лет тому назад все материалы, использовавшиеся в электротехнике, в зависимости от величины их удельной проводимости а делились только на проводники (а = 10 — 0 ом -см ) и диэлектрики (а = 10 10 ом -см ).

К наиболее характерным проводникам, как подчеркивалось в физике — проводникам первого рода, относились металлы и сплавы, обладающие электронной электропроводностью. Кроме того, были известны и сравнительно хорошо изучены свойства жидких тел (растворов, расплавов) с ионной электропроводностью.

Их относили к проводникам второго рода или электролитам удельная проводимость последних существенно меньше, чем у проводников первого рода.

Подавляющее же большинство окружающих нас веществ имеет электронную электропроводность, при значениях удельной проводимости, лежащих в интервале 10″ —10 ом —см и, таким образом, не может быть отнесено ни к проводникам, ни к диэлектрикам. [c.9]

    К проводникам II рода относятся растворы и расплавы электролитов. В данном случае перенос электричества Осуществляется ионами электролита (ионная проводимость), в результате чего наблюдается химическое разложение вещества.

С повышением температуры электропроводность проводников И рода увеличивается, так как при этом уменьшается вязкость среды, в которой перемещаются ионы, и увеличивается скорость передвижения нонов к электродам. [c.

256]

    ГИИ. Ионные триплеты играют важную роль в электропроводности четвертичных аммониевых солей и других электролитов, когда диэлектрическая проницаемость растворителя меньше 12.

Ассоциация двух ионных пар с образованием димера соли также сопровождается уменьшением электростатической энергии, и дальнейшее уменьшение энергии происходит при присоединении к димеру других ионов или иных ионных пар в конце концов этот процесс приводит к кристаллу соли.

Степень ассоциации можно определить криоскопически как отношение среднего молекулярного веса к молекулярному весу мономерной соли.

В бензоле (е = 2,3) степень ассоциации для объемистых четвертичных аммониевых иодидов, перхлоратов и тиоцианатов составляет от 2,4 до 3,2 при концентрации соли 0,001 М (в расчете на мономер) в 1000 г растворителя [11].

Для тиоцианата тетра-н-бутиламмония степень ассоциации постепенно увеличивается с концентрацией соли, достигая 32 при формальной концентрации 0,3 М, и далее уменьшается, вероятно, потому, что в этой точке объемная концентрация соли равна примерно 0,1. В таких растворах частицы растворенного вещества больше напоминают фрагменты кристалла, а не свободные ионы или ионные пары, а среда весьма сходна с умеренно разбавленным солевым расплавом. [c.286]

    Проводники II рода, или ионные проводники, т. е. вещества, в которых ток переносится ионами. К ним относятся многие твердые соли (Ю р Ю ом-см), ионные расплавы (Ю Ср- С < 0 ом-см) и растворы электролитов (1/п 10° р 10 ол-сл). Температурный коэффициент электропроводности ионных проводников положителен. [c.98]

    В отличие от других методов изучения состояния вещества в расплаве, таких как методы определения электропроводности, вязкости, изменения молярных объемов, диаграмм плавкости ИТ. п.

, когда о наличии комплексных соединений в жидкой фазе судят по особым точкам, которые обычно появляются в области состава расплава, отвечающего составу комплексного соединения, метод изоморфной сокристаллизации позволяет обнаружить комплексные соединения в жидкой фазе и в области кристаллизации простой соли иона комплексообразователя. [c.377]

    При получении КПЗ полимеры обычно используются как доноры электронов, а в качестве акцепторов применяются низкомолекулярные вещества. Реакцию комплексообразования проводят либа в растворе, либо путем обработки твердого порошка или пленки полимера парами акцептора, либо в расплаве.

Для полимеров характерно, что состав, строение и свойства КПЗ часто зависят от продолжительности реакции и способа получения комплексов. ОбычнО в полимерных КПЗ не удается получить и выделить соединения заданного состава. Все это затрудняет интерпретацию результатов исследований электропроводности полимерных КПЗ.

[c.49]

    Электропроводность расплавленных фтористого лития и хлористого натрия можно легко измерить. Она ниже, чем у металлов, на несколько порядков. Расплавленный хлористый натрий при 750° С имеет электропроводность, составляющую лишь 10 электропроводности металлической меди при комнатной температуре.

Маловероятно, что электрический заряд в расплавленном Na l перемещается по тому же механизму, что и в металлической меди. Опыты показывают, что заряд в расплавленном Na l переносится ионами Na» и i». Электропроводность расплава — одно из наиболее характерных свойств веществ с ионными связями.

Напротив, мо- [c.466]

    Переменное электрическое поле в меньшей степени зависит от электропроводности расплава [83]. Под действием переменного электрического поля происходит также сдвиг температурной кривой скорости зарождения в сторону низких температур (больших пере-охланедений).

Поле, перпендикулярное слою расплава, дает только сдвиг, а параллельное — также изменение высоты максимумов температурной кривой скорости зарождения. Эффект воздействия переменного поля на процесс зарождения зависит от его частоты.

Так, с увеличением последней от 50 до 10 ООО Гц сдвиг максимумов в область низких температур первоначально растет, а затем убывает. Для антипирина и бетола максимальный эффект получается в поле частотой 2650 Гц.

При этом сдвиг максимума температуры па кривой скорости зарождения кристаллов различных веществ при одинаковой частоте возрастает с увеличением дипольного момента. [c.60]

    Ход процесса поликондепсации можно контролировать по молекулярному весу периодически отбираемых проб (по вязкости расплава или раствора и путем определения содержания концевых групп). Однако в ряде случаев это трудно осуществить, особенно при больших масп1табах производства.

Непосредственным методом паблюдепня за процессом поликопденсации без отбора проб является или измерение электропроводности расплава II, 2], что аналогично определению скорости исчезновения активных концевых групп, например карбоксильных, или непрерывное измерение вязкости расплава.

В условиях крупного производства часто целесообразно проводить реакцию поликондепсации в определенных абсолютно стандартных условиях, при которых воспроизводимость обеспечивается путем точного регулирования температуры, давления и продолжительности отдельтн >1х стадий процесса.

Необходимо при этом особо отметить, что исходные вещества должны строго удовлетворять техническим условиям на чистоту, так как от степени их чистоты, а также чистоты аппаратуры и от условий поликондепсации зависит качество конечного полимера, особенно при проведении поликопденсации в расплаве. Возможность побочных реакций должна быть сведена к минимуму.

Все поликонденсацион-ные полимеры нерастворимы в обычных органических растворителях, и это (с учетом экономической стороны) затрудняет их очистку после завершения процесса поликондепсации. Лишь в редких случаях полимеры этого класса могут быть очищены переосаждением или перекристаллизацией методами, приме- [c.113]

    Проводники П рода, или ионные проводники,—вещества, в которых ток иереносптся ионами. К ним относятся многие твердые соли (Ю р Ю Ом-м), ионные расплавы (1()

Источник: http://chem21.info/info/860239/

4.1.1. Электропроводность диэлектриков

Общие понятия

По сравнению с электропроводностью проводников (см. разд. 2) и полупроводников (см. разд. 3) электропроводность диэлектриков имеет ряд характерных особенностей.

Все диэлектрики под воздействием не изменяющегося во времени напряжения пропускают некоторый, хотя и весьма незначительный ток, называемый током утечки (I), который складывается из двух составляющих: объемного тока () и поверхностного тока () (рис. 4.1).

                                                           (4.1)

Следовательно, общая проводимость диэлектрика () складывается из объемной () и поверхностной () проводимостей:

                                                          (4.2)

Величины, обратные указанным проводимостям, соответственно называют объемным () и поверхностным () сопротивлениями.

Следующей характерной особенностью электропроводности диэлектриков является постепенное спадание тока со временем (рис. 4.2). При подключении диэлектрика к не изменяющемуся во времени напряжению в начальный промежуток времени в цепи протекает быстро спадающий ток смещения (Iсм) плотность которого равна:

.

Этот ток спадает за время 1013…1015 с порядка постоянной времени () схемы «источник-образец». То есть в первом приближении можно сказать, что этот ток обусловливается зарядкой геометрической емкости. Однако общий ток продолжает изменяться и после этого.

Читайте также:  Схема подключения ламп дрл

Это спадание может продолжаться в течение нескольких минут и даже часов и обусловлено перераспределением объемных зарядов, а также установлением медленных (в основном) и быстрых видов поляризации.

Эту спадающую часть тока называют током абсорбции ().

Со временем, когда произойдет зарядка геометрической емкости, т.е. установятся все виды поляризации, произойдет перераспределение объемных зарядов, и в диэлектрике останется не изменяющийся во времени электрический ток – сквозной ток (), который обусловлен поверхностной и объемной электропроводимостями:

.                 (4.3)

При изменении удельного сопротивления диэлектриков ток абсорбции необходимо исключить, выдерживая образец под напряжением в течение некоторого времени.

Для сравнительной оценки различных диэлектриков в отношении их объемной и поверхностной электропроводности пользуются значениями удельного объемного сопротивления (), и удельного поверхностного сопротивления (). По удельному, объемному сопротивлению может быть определена удельная объемная проводимость:

,

а по удельному поверхностному сопротивлению – удельная поверхностная проводимость:

.

Объемное удельное сопротивление образца диэлектрика произвольной формы может быть найдено из выражения:

                                                        (4.4)

где  – объемное сопротивление образца произвольной формы, Ом;  – геометрический параметр, м.

Так, для плоского образца, у которого  (см. разд. 1), удельное сопротивление равно:

,                                                      (4.5)

где  – площадь поперечного сечения образца (площадь измерительного электрода), м2;  – толщина образца, м.

Объемная удельная проводимость () измеряется в сименсах на метр ().

Удельное поверхностное сопротивление (в омах) может быть найдено из выражения:

,                                     ………………..(4.6)

где  – поверхностное сопротивление образца, Ом;  – длина электродов, м;  – расстояние между электродами, м.

Удельная поверхностная проводимость  измеряется в сименсах.

Электропроводность газов

Электропроводность газов обусловлена наличием в них некоторого количества заряженных частиц. В нормальных условиях число заряженных частиц (ионов газа или твердых и жидких примесей, находящихся во взвешенном состоянии) в 1 м3 атмосферного воздуха не превышает нескольких десятков миллионов.

Происхождение носителей заряда в газах объясняется различными факторами:

· радиоактивным излучением Земли;

· радиацией, проникающей из космического пространства;

· излучением Солнца;

· иногда тепловым движением молекул и т.п.

При поглощении энергии бомбардирующей частицы молекула газа теряет электрон и превращается в положительный ион. Высвобождаемый при этом электрон «прилипает» к нейтральной молекуле, образуя отрицательный ион.

В ряде случаев концентрация свободных носителей заряда может достигать очень больших значений. Это обычно связано с фотоионизацией молекул газа.

Такая ионизация может происходить, например, при воздействии ионизирующих излучений: рентгеновских и гамма-лучей, потоков нейтронов и т.п.

Заряженные ионы так же, как и окружающие их не имеющие электрического заряда молекулы газа, совершают беспорядочные тепловые движения, и вследствие диффузии происходит выравнивание концен

трации ионов в газе. При встрече положительных и отрицательных ионов происходит их рекомбинация. В стационарном случае, когда число ионов не изменяется с течением времени, между процессами генерации и рекомбинации заряженных частиц устанавливается динамическое равновесие.

Вычислим удельную проводимость газа. При наложении внешнего электрического поля положительные и отрицательные ионы, преодолевая сопротивление трения газа, будут двигаться между электродами со скоростями соответственно:

;

,

где  и  – подвижности положительного и отрицательного ионов.

Зависимость между числом имеющихся в 1 м3 газа положительных () и отрицательных () ионов и числом ионов, рекомбинирующих в 1 м3 газа за время 1 с (), можно представить так:

,                                                  (4.7)

где  – коэффициент рекомбинации ионов газа, м3/с. Для воздуха, например,  м3/с.

В стационарном случае

,

так что .

Если напряженность поля (Е) очень мала, так что протекающий ток не меняет концентрацию ионов в газе, плотность тока может быть определена из выражения:

.                                 (4.8)

Принимая во внимание, что , получим выражение для удельной проводимости газа:

.                 (4.9)

Удельная проводимость воздуха в слабых полях составляет около 10-15 См/м.

Из формулы (4.8) видно, что при малых значениях напряженности внешнего электрического поля, когда , ,  и  можно считать постоянными, плотность тока в газе прямо пропорциональна напряженности приложенного поля, т.е.

в этих условиях соблюдается закон Ома (рис. 4.3, участок 0А).

Однако при дальнейшем возрастании напряженности приложенного поля из-за возрастания скорости дрейфа ионов вероятность их рекомбинации уменьшается, и в основном все ионы устремятся к электродам. Это ток насыщения (участок АВ).

Для воздуха при расстоянии между электродами 0,01 м насыщение достигается при напряженности поля 0,5 В/м. Плотность тока насыщения в воздухе (при обычных условиях) весьма мала и достигает 10-14 А/м2.

Участок 0АВ называют областью несамостоятельной электропроводности, так как электропроводность (концентрация свободных носителей зарядов) определяется мощностью внешних ионизаторов.

Значение удельного сопротивления воздуха () составляет порядка 1018 Ом∙м. При дальнейшем повышении напряженности поля  В/м (рис. 4.

3, участок ВС) происходит значительное повышение плотности тока вследствие процессов ударной ионизации молекул электронами в сильном электрическом поле вплоть до пробоя газового промежутка.

Участок ВС – называют областью самостоятельной электропроводности.

Электропроводность жидкостей

Электропроводность жидкостей обусловлена ионами, образующимися при диссоциации молекул самой жидкости или ее примесей. В связи с увеличением энергии хаотического теплового движения молекул степень ионизации и концентрации ионов растет с повышением температуры по экспоненциальному закону:

,                                               (4.10)

где W – энергия диссоциации. Отсюда удельная проводимость равна:

,                                       (4.11)

где n – заряд иона;  и  – подвижности положительных и отрицательных ионов соответственно; А – константа.

Логарифм проводимости жидкости линейно уменьшается с увеличением обратной абсолютной температуры 1/Т (рис.

4.4), как и в собственных полупроводниках. Однако в отличие от полупроводников, для которых , (– ширина запрещенной зоны), показатель экспоненты в жидкостях определяется энергией их диссоциации:

.

Удельное сопротивление жидкостей равно:

,                (4.12)

где В – константа.

По аналогичному закону изменяется вязкость жидкостей (). Зависимость  жидкостей объясняется как изменением , так и изменением температурной диссоциации молекул .

Диссоциация молекул легче происходит в полярных жидкостях, чем в неполярных. Ввиду того что энергия диссоциации полярных жидкостей значительно меньше, чем неполярных, их удельная проводимость существенно выше.

Так, для сильно полярных жидкостей (дистиллированной воды, этилового спирта, ацетона) , для слабо полярных (совола, касторового масла) , для неполярных (бензола, трансформаторного масла)  Ом∙м.

В неполярных жидкостях молекулы основного вещества практически не диссоциируют на ионы, и их электропроводность обусловлена примесями особенно полярных веществ.

В жидкостях (и газах) с примесями иногда наблюдается молионная электропроводность, характерная для коллоидных систем, которые представляют собой тесную смесь двух фаз веществ; причем одна фаза в виде мелких частиц (капель, зерен, пылинок и т.п.) равномерно взвешена в другой. Из коллоидных систем наиболее часто встречаются в электроизоляционной технике эмульсии (обе фазы – жидкости) и суспензии (дисперсная фаза – твердое вещество, дисперсионная среда – жидкость). Ста

бильность эмульсий и суспензий, т.е.

способность их длительно сохраняться без оседания дисперсной фазы на дно сосуда (или всплывания ее на поверхность) вследствие различия плотностей обеих фаз, объясняется наличием на поверхности частиц дисперсной фазы электрических зарядов (при одноименном заряде частицы взаимно отталкиваются). Такие заряженные частицы дисперсной фазы и называют молионами. При наложении на коллоидную систему электрического поля молионы приходят в движение, что выражается в виде электрофореза.

Примеры практического использования электрофореза – покрытие металлических предметов каучуком и смолами из их суспензий, обезвоживание различных материалов в электрическом поле и др.

В отличие от электролиза при электрофорезе не наблюдается образования новых веществ, а лишь меняется относительная концентрация дисперсной фазы в различных частях объема вещества. Молионная электропроводность присуща жидким лакам и компаундам, увлажненным маслам и т.п.

Ее вклад в проводимость, как и вклад ионной электропроводности, зависит от вязкости жидкости.

Электропроводность твердых диэлектриков

Электропроводность диэлектриков в отличие от электропроводности полупроводников чаще всего носит не электронный, а ионный характер. Это связано с тем, что ширина запрещенной зоны в диэлектриках , лишь ничтожное количество электронов может отрываться от своих атомов за счет теплового движения.

Ионы же часто оказываются слабо связанными в узлах решетки, и энергия W, необходимая для их срыва, сравнима с kT, Например, в кристалле NaCl  эВ, а энергия отрыва иона натрия  эВ.

Поэтому, несмотря на меньшую подвижность ионов () по сравнению с подвижностью электронов (), ионная проводимость оказывается больше электронной за счет значительно большей концентрации свободных ионов:

.                                           (4.13)

Носителями заряда в диэлектриках обычно оказываются ионы малых размеров, подвижность которых выше:

· протоны в водородсодержащих соединениях (в полимерах, кристаллах типа KH2PO4 и других с водородными связями);

· ионы натрия (в NaCl и в содержащем натрий стекле) и т.д.

При этом следует отметить, что число диссоциированных (сорванных) ионов () с изменением температуры изменяется по экспоненциальному закону:

,                                            (4.14)

где  – общее число ионов i-го типа;  – энергия диссоциации иона i-го типа; кТ – тепловая энергия.

Удельная электрическая проводимость твердыхдиэлектриков, как и полупроводников, растет с ростом температуры по экспоненциальному за­кону:

.                                          (4.15)

Однако зависимость  часто обусловлена не только экспоненциальным ростом концентрации носителей (рис. 4.5, б)

n~exp(-Wg/kT),

но и ростом подвижности:

µ~exp(-Wn/kT),

где Wn – энергия перемещения иона, определяющая переход его из одного равновесного состояния в другое). Это связано с тем, что дрейфовая подвижность ионов мала и осуществляется путем их перескока с ловушки на ловушку, разделенных потенциальным барьером Wn (так называемая «прыжковая» электропроводность). Вероятность таких тепловых перескоков прямо пропорциональна exp(-Wn/kT) (рис. 4.5, а).

Обычно в диэлектрике имеется несколько видов носителей заряда. Например, кроме ионов основного вещества могут быть слабо связанные ионы примесей. В этом случае удельная проводимость складывается из собственной проводимости с энергией активации (W) и примесной проводимости с энергией активации (Wnp):

;                                                 (4.16)

,

где  — коэффициент, объединяющий постоянные (– заряд i-го носителя;  – концентрацию i-го носителя;  – подвижность i-го носителя); Wi —  энергия активации.

В широком диапазоне температур зависимость логарифма удельной проводимости (γ) от обратной величины абсолютной температуры (Т) должна состоять из двух прямолинейных участков с различными значениями угла наклона к оси абсцисс (рис. 4.6).

При температуре выше точки излома А электропроводность определяется в основном собственными дефектами – это область высокотемпературной, или собственной электропроводности.

Ниже излома, в области низкотемпературной, или примесной электропроводности, зависимость более пологая.

В отличие от трудно воспроизводимой низкотемпературной области электропроводности, определяемой в основном природой и концентрацией примесей, значение собственной удельной проводимости не зависит от удельной проводимости и не зависит от примесей, хорошо воспроизводимо и является физическим параметром данного соединения.

Температура, при которой наблюдается излом зависимости , сильно зависит от степени чистоты и совершенства материала. При увеличении содержания примесей и дефектов примесная удельная проводимость растет и оказывается существенной при более высоких температурах (рис. 4.6). По наклонам участков прямых зависимости  можно определить энергию активации носителей заряда и их природу.

Ионная электропроводность сопровождается переносом вещества: положительные ионы движутся к катоду, а отрицательные к аноду. Электролиз особенно ярко выражен при повышенных температурах, когда ρ мало, и при приложении высоких постоянных напряжений.

По выделившемуся на электродах веществу можно определить характер носителей заряда.

У диэлектриков с чисто ионным характером электропроводности строго выполняется закон Фарадея – закон пропорциональности между количеством пропущенного электричества и количеством выделившихся веществ.

Некоторые диэлектрики (например,  и другие титансодержащие керамические материалы) обладают электронной или дырочной электропроводностью.

Однако носителями часто являются электроны не основного  вещества, а примесей и дефектов.

В титансодержащей керамике при высокотемпературном синтезе появляются в значительном количестве кислородные вакансии, отдающие слабо связанные электроны или дырки. От них и зависит наблюдаемая электропроводность.

Твердые пористые диэлектрики при наличии в них влаги, даже в ничтожных количествах, резко увеличивают свою электропроводность (рис 4.7).

На участке кривой АВ значение сопротивления снижается в результате изменения степени диссоциации молекул воды и молекул диэлектрика в водном растворе на ионы.

Участок ВС обусловлен процессами сушки, а на участке СД происходит диссоциация молекул диэлектрика на ионы.

Мы рассматривали электропроводимость твердых диэлектриков при относительно невысоких значениях напряженности электрического поля.

При достаточно больших напряженностях электрического поля в диэлектриках появляется электронная составляющая электропроводности, быстро возрастающая с увеличением напряженности электрического поля, в связи с чем наблюдается нарушение закона Ома.

При напряженностях электрического поля  В/м, т.е. близких к пробивным напряженностям поля, зависимость электропроводности от величины напряженности поля подчиняется закону Пуля:

,                   (4.17)

Для ряда диэлектриков более точным оказывается закон Френкеля:

,                       (4.18)

где  – электропроводность в слабых электрических полях;  – коэффициенты нелинейности, характеризующие свойства диэлектрика; Е – напряженность электрического поля.

Источник: http://libraryno.ru/4-1-1-elektroprovodnost-dielektrikov-elektomaterial/

Ссылка на основную публикацию