Электрические датчики давления

Датчики давления. Виды и работа. Как выбрать и применение

Датчики давления являются устройством, выдающим сигналы на выходе, зависящие от давления измеряемой среды. Сегодня не обходятся без точных датчиков определения давления. Они применяются в автоматизированных системах всех отраслей промышленности.

Многие датчики давления функционируют на преобразовании давления в движение механической части. Кроме механических элементов (трубчатые пружины, мембраны) для замеров используются тепловые и электрические системы. Электронные элементы дают возможность осуществить производство датчиков давления на электронных элементах.

Датчик давления состоит из:

  • Первоначальный преобразователь вместе с чувствительным элементом.
  • Корпус датчика, имеющий разные конструкции.
  • Электрическая схема.

Классификация и принцип работы

Волоконно-оптические

Этот тип датчиков считается самым точным в работе, которая не имеет большой зависимости от изменений температуры. Элементом точной чувствительности действует оптический волновод. Давление в волоконно-оптических приборах определяется путем поляризации света, прошедшего по элементу чувствительности, и колебаниям амплитуды.

Оптоэлектронные датчики давления

Датчики давления состоит из нескольких слоев, через которые проходит свет. Один слой меняет свойства от величины давления среды. Меняются 2 параметра: величина преломления и размер слоя. Методы изображены на рисунках.

При изменении свойств будет изменяться характеристика света, проходящего через слои. Фотоэлемент производит регистрацию изменений. Преимуществом оптоэлектронных приборов стала высокая точность.

Датчики легко определяют давление, имеют повышенное разрешение, чувствительность, стабильны к действию температуры.

Перспективность оптоэлектронных приборов обуславливается работой на интерференции света, использованием интерферометра для замера малых перемещений.

Основные составляющие элементы датчика – кристалл оптического анализатора с диафрагмой, фотодиод и детектор. Детектор составляют три светодиода.

К 2-м фотодиодам прикреплены оптические фильтры, которые имеют отличия по толщине. Фильтры состоят из кремниевых зеркал, имеющих отражение от лицевой части поверхности, которые имеют слой оксида кремния. Поверхность напылена слоем алюминия малой толщины.

Световой преобразователь подобен емкостному датчику. Его диафрагма смоделирована способом травления, которая покрыта металлическим тонким слоем. Стеклянная пластина снизу покрыта металлическим слоем. Между подложкой и стеклом есть промежуток, образованный двумя прокладками.

Два металлических слоя образуют интерферометр с изменяемым воздушным промежутком. В его состав вошли: зеркало на стекле стационарного вида и меняющее положение зеркало на мембране.

На подобной основе изготавливают чувствительные датчики размером 0,55 мм. Они легко проходят через ушко иглы.

Оптическое волокно взаимосвязано с сенсором. В нем с помощью управления микропроцессора подключается монохроматический свет, который вводится в волокно.

Делается замер интенсивности обратного света, по калибровке рассчитывается наружное давление и результат показывается на экране.

Сенсоры используют в медицине для проверки давления внутри черепа, измерения кровяного давления в артериях легких. Другими методами в легкие добраться невозможно.

Магнитные

Магнитные датчики давления еще называют индуктивными. Элементом чувствительности служит Е-пластина, в центре расположена катушка, и проводящая мембрана. Она расположена на малом расстоянии от конца пластины. При подсоединении обмотки образуется магнитный поток, он идет через пластину, промежуток воздуха и мембрану.

Магнитная проницаемость воздуха в зазоре в 1000 раз слабее мембраны и пластины. Малое изменение параметра зазора приводит к значительному изменению индуктивности.

При воздействии давления мембрана изгибается, сопротивление катушки меняется. Преобразователь переводит изменение в сигнал тока. Измерительный рабочий элемент преобразователя сделан по схеме моста, обмотка включена в плечо. АЦП подает сигнал от элемента измерения в виде сигнала от давления.

Емкостные

Датчики давления самой простой конструкции, состоящий из плоских электродов (2 шт.) с зазором. Электрод сделан мембраной, на нее давит измеряемое давление. Меняется размер зазора. Такой вид датчика образует конденсатор с меняющимся зазором. Величина емкости конденсатора меняется при изменении промежутка от пластин или от электродов в данном случае.

Для определения очень небольших изменений давления приборы наиболее применимы и эффективны. Они дают возможность произвести замеры избыточного давления в различной среде.

На предприятиях при выполнении технологических процессов, в которых задействованы системы воздушного и гидравлического оборудования, в насосах, компрессорах, на станках емкостные датчики нашли широкое применение.

Датчик емкостного вида имеет конструкцию, которая имеет стойкость к вибрациям, скачкам температуры, защищена от химической и электромагнитной среды.

Ртутные

Также простая конструкция прибора. Действует по закону о сообщающихся сосудах. На одну емкость давит давление, которое нужно измерить. По величине другого сосуда – определяется давление.

Пьезоэлектрические

Элементом чувствительности в этом датчике служит пьезоэлемент. Это вещество, создающее электрический сигнал во время деформации. Такое свойство называется прямым пьезоэффектом.

В измеряемой области находится пьезоэлемент, который образует ток, прямо зависящий от значения давления. Сигнал в датчике из пьезоматериала образуется только при деформации.

При неизменном давлении нет деформации, поэтому датчик годен только для проведения замеров среды с быстро изменяемым давлением.

Если давление не будет изменяться, то не будет деформации, пьезоэлектрик не сгенерирует сигнал.

Пьезоэлектрики нашли использование в первичных преобразователях потока водяных вихревых счетчиков, и других сред. Их устанавливают парами в трубу с проходом в несколько сотен мм за предметом обтекания. Фиксируют вихри. Количество и частота вихрей прямо зависят от скорости потока и расхода по объему.

Пьезорезонансные датчики давления

В отличие от вышеописанного вида датчика здесь применяется обратный пьезоэффект, то есть, форма материала пьезоэлемента изменяется от тока подачи. Применяется резонатор в виде пластины из пьезоматериала.

На пластину с двух сторон нанесены электроды. На них подключается по очереди напряжение питания с разным знаком, пластина производит изгиб в обе стороны в зависимости от полярности поданного напряжения и частоты.

Если воздействовать на пластину силой, чувствительной мембраной к давлению, то резонатор изменит частоту колебаний. Частота резонатора укажет значение давления на мембрану, которая оказывает давление на резонатор.

На рисунке изображен пьезорезонансный датчик с абсолютным давлением, который сделан герметичной камерой 1. Она достигается корпусом 2, основанием 6, мембраной 10. Мембрана крепится на электронную сварку к корпусу. Держатели закреплены на основании перемычками. Силочувствительный резонатор удерживает держатель.

Мембрана 10 давит на втулку 13 и шарик 6, который закреплен в держателе. Шарик давит на чувствительный резонатор 5. Проводка закреплена на основании 6, необходима для слияния резонаторов с генераторами.

Сигнал на выходе абсолютного давления образуется по схеме путем разности генераторных частот. Датчик находится в активном термостате 18 с неизменной температурой 40 градусов.

Давления для измерения поступает через штуцер 12.

Резистивные датчики давления

Другим названием этот датчик называется тензорезистор. Это элемент, который меняет собственное сопротивление при деформации.

Такие тензорезисторы монтируют на мембрану, которая чувствительна к изменяющемуся давлению.

В результате при приложении силы на мембрану происходит ее изгиб, из-за этого изгибаются тензорезисторы, которые на ней закреплены. На тензорезисторах меняется сопротивление и значение тока цепи.

Растяжение элементов из проводников на каждом тензорезисторе ведет к увеличению длины и снижению сечения. В итоге сопротивление повышается. При сжатии процесс происходит наоборот. Изменения сопротивления незначительные, поэтому для обработки сигнала применяются усилители. Деформация переделывается в изменение сопротивления проводника или полупроводника, а затем в сигнал тока.

Тензорезисторы выполнены в виде проводящего зигзагообразного элемента, или из полупроводника, который расположен на гибкой подложке, приклеенной к мембране. Подложка сделана из слюды, полимерной пленки или бумаги.

Элемент проводника – из полупроводника, тонкой проволоки или фольги, напыленных на металл в вакуумном состоянии. Чувствительный элемент соединяют с цепью измерения выводами из проволоки или площадками контактов. Тензорезисторы чаще имеют размер площади до 10 мм2.

Они более подходят для замера давления, веса, силы нажатия.

Советы по выбору и приобретению датчиков давления

  1. Тип давления. Важно определить, что вы будете измерять. Есть несколько типов давления: барометрическое, избыточное, вакуумное, относительное, абсолютное.
  2. Интервал разбега давления.
  3. Класс защиты датчика.

    Для разных условий работы определены свои степени защиты от пыли и влаги.

  4. Термокомпенсация. Эффекты температуры: например, расширение предметов, создают значительные помехи на результат измерения датчика.

    Если температура всегда изменяется в среде, то нужна термокомпенсация. Про границы температур тоже нельзя забывать.

  5. Вид материала. Свойства материала играют значительную роль для агрессивных условий.
  6. Тип сигнала выхода.

    Бывают цифровой вид и аналоговый. Нужно также учесть интервалы выхода сигнала, количество проводов.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/datchiki-davleniia/

Датчики давления. Типы, характеристики, особенности, подбор

Давление необходимо учитывать при проектировании многих химических процессов. Давление определяется как сила действующая на единицу площади и измеряется в английских единицах — пси или в СИ единицах — Па.
Существуют три типа измеряемого давления:

  1. Абсолютное давление — атмосферное давление плюс избыточное давление;
  2. Избыточное давление — абсолютное давление минус атмосферное давление;
  3. Дифференциальное давление — разность давлений между двумя точками.

Существуют различные типы датчиков давления, которые сегодня доступны на рынке для использования в промышленности. Каждый из них имеет преимущества в определенных ситуациях.

Критерии отбора датчика

Для того чтобы контролируемая давлением система работала правильно и эффективно, важно, чтобы используемый датчик давления мог давать точные показания по мере необходимости и в течение длительного периода времени без необходимости ремонта или замены в условиях работы системы. Существует несколько факторов, влияющих на пригодность конкретного датчика давления для конкретного процесса. Основные это:

  • характеристики используемых веществ в среде которых будет использоваться устройство;
  • условия окружающей среды;
  • диапазон давлений;
  • уровень точности и чувствительности, требуемые в процессе измерения.

Процесс

Чувствительный элемент (упругий элемент) будет подвергаться воздействию веществ, используемых в процессе, поэтому материалы датчика, которые могут реагировать с данными веществами или подвергаться воздействию агрессивных сред — непригодны для использования. Мембраны (диафрагмы) являются оптимальными даже для очень суровых условий использования.

Окружающая среда

Окружающая среда (в технологическом процессе — это среда создаваемая веществом, вибрация, температура и т.д.), в которой проводится технологический процесс, также должна быть учтена при выборе датчика давления.

В агрессивных средах, при сильных вибрациях в трубопроводе, или при экстремальных температурах, датчики должны иметь дополнительный уровень защиты.

Герметичные, прочные корпуса с заполнением материалом, содержащим глицерин или силикон — часто используются, для того, чтобы защитить внутренние компоненты датчика (кроме чувствительного элемента) от очень жестких, агрессивных сред и колебаний.

Диапазон давлений

Большинство процессов работают в определенном диапазоне давлений. Поскольку определенные датчики давления работают оптимально в определенных диапазонах давления, существует необходимость выбрать устройства, способные функционировать в диапазоне, установленном процессом.

Чувствительность

Различные процессы требуют различных уровней точности. В общем, чем точнее датчик, тем он дороже, таким образом, будет экономически выгодно выбрать датчики, которые способны максимально удовлетворить требуемую точность.

Существует также компромисс между точностью и способностью быстро обнаруживать изменения давления.

Следовательно, в процессах, в которых давление сильно варьируется в течение коротких периодов времени — нецелесообразно использовать датчики, которым требуется больше времени, чтобы дать точные показания давления, хотя они и могли бы дать более точные значения.

Методы измерения давления

Существует несколько наиболее часто используемых методов измерения давления. Эти методы включают в себя визуальный замер высоты жидкости в колонне, метод упругой деформации и электрические методы.

Высота жидкости в колонне

Давление можно выразить как высоту жидкости с известной плотностью в трубке. Используя уравнение   P = ρ GH, можно легко вычислить значение давления. Данные типы измерительных приборов обычно называют манометрами. Для измерения высоты жидкости в колонне, может быть использована шкала с единицами измерения расстояния, также как и откалиброванная шкала давления.

Обычно в качестве жидкости в этих колоннах используется вода или ртуть. Вода используется, когда вы хотите достичь более высокой чувствительности (плотность воды значительно меньше, чем плотность жидкой ртути, так что высота столба воды будет более сильно меняться при изменении давления).

Ртуть же используется, когда вы хотите измерять более высокие значения давления, но с меньшей чувствительностью.

Упругая деформация

Этот метод измерения давления основан на принципе, который гласит, что степень деформации упругого материала прямо пропорциональна прикладываемому давлению. Для данного метода, в основном, используются три типа датчиков: трубки Бурдона, диафрагмы и сильфоны. (См. раздел «Типы датчиков»)

Электрические методы

Электрические методы, используемые для измерения давления основаны на принципе, основывающимся на том, что изменение размера влияет на электрическое сопротивление проводника.

Устройства, использующие для измерения давления изменение сопротивления называют тензодатчиками.

Также существуют и другие электрические датчики, например емкостные, индуктивные, магнетосопротивления (Холла), потенциометрические, пьезометрические и пьезорезистивные преобразователи. (См. раздел «Типы датчиков»)

Типы датчиков

Существует множество различных датчиков давления являющихся наиболее подходящими для конкретного процесса, но их обычно можно разделить на несколько категорий, а именно: упругие датчики, электрические преобразователи, датчики дифференциального давления и датчики давления вакуума. Ниже представлены категории, каждая из которых содержит уникальные внутренние компоненты более подходящие под использование в конкретной ситуации.

Упругие датчики

Большинство датчиков давления жидкости имеют упругую структуру, где жидкость заключена в небольшой отсек по меньшей мере с одной упругой стенкой.

При использовании данного метода, показания давления определяются путем измерения отклонения этой эластичной стенки, представляя результат непосредственным отсчетом через соответствующие связи, либо через трансдуцированные электрические сигналы.

Упругие датчики давления очень чувствительны, они довольно хрупкие и подвержены вибрации. Кроме того, они, как правило, значительно дороже, чем манометры, и поэтому в основном используются для передачи измеренных данных и измерения разности давлений.

Теоретически можно использовать довольно широкий спектр упругих элементов для упругих датчиков давления. Однако большинство устройств используют ту или иную форму трубки Бурдона или диафрагмы.

Трубки Бурдона

Принцип, на котором основаны разного вида трубки Бурдона:  Давление, подаваемое внутрь трубки, вызывает упругую деформацию эллиптического или овального сечения трубки в сторону круга, которая вызывает появление напряжений в продольном направлении, заставляющих трубку разгибаться, а свободный конец трубки перемещаться. Система рычагов и передач превращает это движение и возвращает стрелку, показывающую давление относительно круглой шкалы. Диапазон измерения такого манометра составляет — от 10 Па до 1000 МПа. Трубные материалы могут быть изменены соответствующим образом в соответствии с требуемым условием процесса. Также, трубки Бурдона — портативные и требуют минимального технического обслуживания, однако, они могут быть использованы только для статических измерений и имеют низкую точность.

Материалом для трубчатых пружин может служить сталь, бронза, латунь. В зависимости от конструктивного исполнения трубчатые пружины могут быть одно- и многовитковые (винтовые и спиральные), S-образные и т.п.

Распространены одновитковые трубчатые пружины, используемые в манометрах, которые предназначены для измерения давления жидкостей и газов, а также в таких типах манометров как глубиномер.

Датчики С-типа могут быть использованы в диапазонах давлений приближающихся к 700 МПа; они имеют минимальный рекомендованный диапазон давления — 30 кПа (т.е. они не достаточно чувствительны для измерения разности давлений меньше чем 30 кПа).

Сильфоны

Сильфоны имеют цилиндрическую форму и содержат много складок. Они могут деформироваться в осевом направлении при изменении давления (сжатие или расширение). Давление, которое должно быть измерено прикладывается к одной стороне сильфона (внутри или снаружи), тогда как на противоположную сторону действует атмосферное давление. Абсолютное давление может быть измерено путем откачки воздуха из внешнего или внутреннего пространства сильфона, а затем измерением давления на противоположной стороне. Сильфон может быть подключен только к включающим / выключающим переключателям или к потенциометру и используется при низких давлениях,<\p>

Источник: http://kontech-system.com.ua/articles/datchiki-davlenija-tipy-harakteristiki-osobennosti-podbor/

Датчик измерения давления: описание и устройство, принцип работы, классификация

В современной промышленности различной направленности широко применяются датчики измерения давления. Служат они для максимально точного измерения показаний в разных средах и дальнейшего получения данных в электрической или цифровой форме. Основные датчики делятся на оптические, резистивные, магнитные, пьезоэлектрические, ёмкостные, ртутные пьезорезонансные

.

Устройство датчика

У этого прибора параметры могут изменяться в зависимости от изменения параметров в измеряемой среде, например, жидкости, газа, или пара. В датчике, характеристики измеряемой среды преобразуется в унифицированный код для вывода показателей на указательный прибор.

Датчик состоит из первичного преобразователя, который включает в себя чувствительный элемент — получатель давления, схемы второстепенной обработки сигнала, и различные части корпуса. В некоторых случаях оборудуется деталями герметизации для условий работы во влажных и агрессивных средах.

Классификация приборов по принципу действия

От принципа действия или метода, используемого при преобразовании входного сигнала в электрический выходной, датчики измерения классифицируют:

  • Тензометрический метод. Чувствительные детали производят измерение сопротивления при воздействии на тензорезистор, прикреплённый к упругому элементу, который при воздействии давления деформируется.
  • Пьезорезистивный метод. Работает на основе интегральных чувствительных деталей из кремния. Преобразователи из кремния обладают высокой чувствительностью благодаря возможности изменения сопротивления полупроводника. Для измерения характеристик в неагрессивных средах используется Low cost — метод исполнения оборудования, когда чувствительный элемент не оборудован какими-либо степенями защиты. В случае работы в среде где, возможно, оказания на датчик агрессивного вещества, чувствительный элемент оборудуется герметичным корпусом с разделяющей диафрагмой из стали, которая передаёт давление посредством кремниевой жидкости.
  • Ёмкостный метод. Главной частью датчика, работающего по такому методу является ёмкостная ячейка. Её работа заключается в изменении электрической ёмкости между укладкой конденсатора и измерительной мембраны в зависимости. Главным плюсом можно отметить защиту от деформации, при отсутствии давления мембрана восстанавливает свою форму, при этом калибровка такого датчика не требуется. А также высокая стабильность характеристик обусловлена малым влиянием погрешности температуры за счёт небольшого объёма жидкости, которая заполняет внутренний объем ячейки.
  • Резонансный метод. За основу работы по такому принципу взято изменение частоты резонансы колеблющегося элемента при его деформации. Из недостатков можно выделить большое время отклика, и невозможность работы в агрессивных средах без потери измерительной точности.
  • Индуктивный метод. Основывается на регистрации вихревых оков. Измерительный элемент состоит из двух изолированных катушек металлическим экраном. Преобразователь проводит измерение смещения мембраны при отсутствии фактического контакта между двумя поверхностями. Электрический ток генерируется в катушках таким образом, что заряд и разряд катушки происходит на равных отрезках временного промежутка. При изменении положения мембраны создаётся ток в зафиксированной катушке, после чего следует изменение индуктивности системы. Смещение данных основной катушки даёт возможность о преобразовании данных в стандартный сигнал, который по своим параметрам пропорционален оказанному давлению.
  • Ионизационный метод. Работает по принципу регистрации поток ионизированных частиц, как ламповый диод. Лампа оборудуется двумя электродами, катодом, анодом, и нагревателем в некоторых случаях. Преимуществом является возможность регистрировать данные в средах с низким давлением, в том числе и вакуума, но при атмосферном давлении такое оборудование эксплуатировать нельзя.
  • Пьезоэлектрический метод. Задумка основывается на основе пьезоэлектрического эффекта, в котором пьезоэлемент создаёт электрический сигнал, пропорционально воздействию измеряемой среды на него. Используется для измерения постоянно изменяющихся акустических и импульсных сред. Обладает широким диапазоном динамического и частного измерения данных. Обладает небольшой массой, габаритами и высокой надёжностью при эксплуатации в тяжёлых условиях.

Виды датчиков

Ёмкостный. Обладает самой простой конструкцией, которая включает в себя два плоских электрода с зазором между ними.

Один из них выполнен в виде мембраны на которую, оказывается влияние измеряемой среды, в результате чего изменяется зазор между электродами. По сути, этот тип похож на конденсатор с изменяемым зазором.

Такой датчик в силах зафиксировать даже маленькое изменение показаний.

Пьезоэлектрический. Основным конструктивным элементом является пьезоэлемент, материал который выводит сигнал при оказании на него измеряемых характеристик.

Находится он в измеряемой среде, и выделяет ток в зависимости от величины изменения давления.

Но по причине того, что этот элемент изменяет свои выводимые данные только при изменении среды, то при постоянных параметрах он никакие данные показывать не будет, и пригоден для работы только в среде где давление периодически изменяется.

Оптический.

Устройство работы таких датчиков может заключаться на основе двух принципов работы:

  • Волоконно-оптическом. Является наиболее точным и работа по измерению не зависит от изменения температурного режима. Основной частью для измерения приходится оптический волновод. О величине измерения давления у такого рода приборах делают заключение по изменению амплитуды и полярности проходящего света через чувствительную часть.
  • Оптоэлектронном. Состоит из многослойной прозрачной структуры, чрез которую проходит свет. При этом один из этих слоёв может изменять показатель преломления и толщину слоя в зависимости от оказываемого давления.

На иллюстрации ниже схематично изображены оба метода работы. Рисунок, А — изменение преломления, рисунок Б — изменение слоя в толщине.

Ртутный.

Элементарный и технически простой датчик. Работает на основе двух сообщающихся сосудов, на один из который, оказывается давление, а на второй аналоговым способом выводятся данные, и определяется по параллельно совмещённой измерительной шкале.

Магнитный.

Работает на основе индуктивного метода. Чувствительная часть заключается в Е-образной планке, посередине которой расположена катушка, и чувствительная мембрана, по ней передаются измеряемые параметры. Располагается мембрана около пластины, на небольшом расстоянии от края.

Катушка при включении, создаёт магнитный поток, который в свою очередь, следует через планку, зазор и мембрану.

Проницаемость магнитного зазора в несколько сотен раз меньше проницаемости планки и мембраны, поэтому изменение индуктивности происходит даже при небольшом изменении величины зазора.

Пьезорезонансный.

Работает на основе пьезоэффекта, но с одним отличием — в этом случае используется обратный эффект пьезоэлемента, основанный на изменение формы материала в зависимости от поступающего тока.

В этом датчике применяется резонатор, на котором расположены два электрода по разные стороны, на них попеременно подаётся ток разной полярности, и вследствие этого пластина выгибается в различные стороны с учётом поступаемой частоты.

Отличие от манометра

Главным отличие такого рода датчиков, от манометра — то что это прибор, предназначающийся для измерения характеристик без его преобразования. В манометре от измеряемых характеристик зависит показание прибора, которые выводятся на его аналоговый прибор или дисплей.

Источник: https://220v.guru/elementy-elektriki/datchiki/datchik-izmereniya-davleniya-princip-raboty.html

Принцип работы датчиков давления, расхода и уровня

Главная » Электромонтаж » КИПиА » Принцип работы датчиков давления, расхода и уровня

Содержание

  • 1 Датчики давления
  • 2 Датчики уровня

Иногда многим людям может потребоваться измерить давление. Для этого необходимо использовать датчики давления. Их принцип работы основан на преобразовании давления в механическое перемещение.

Кроме, механических систем, для измерения давления также могут использоваться механические и тепловые системы.

Датчики давления

Механические датчики давления состоят из:

  1. Жидкостных датчиков давления.
  2. Поршневых систем.
  3. Пружинных систем.

Теперь пришло время рассмотреть датчики движения, которые встречаются наиболее часто. Наиболее часто на сегодняшний день используют пружинные датчики давления.

Их действие будет основано на том, что возникновении упругой деформации пружины, которая считается пружинным элементом прибора. При изменении давления будет возникать деформация внутри и снаружи.

Изменение формы определенного элемента будет передаваться на подвижную часть прибора со стрелкой. При снятии давления элемент примет прежнюю форму.

В технических манометрах чаще всего применяются упругие пружины:

  • Одновитковые.
  • Многовитковые.
  • Плоские мембраны.
  • Сильфоны.

Раскручивание пружины будет происходить из-за того, что при увеличении внутреннего давления эллиптическое сечение будет стремиться принять круглую форму. В результате этого могут возникать напряжения, которые будут раскручивать пружину.

Свободный конец будет перемещаться прямопропорционально давлению внутри ее. Таким образом, можно сказать о том, что измеряемое давление будет преобразовываться в механическое перемещение свободного конца пружины.

Величина такого перемещения чаще всего будет составлять 5-7 мм.

Многовитковая трубчатая пружина будет иметь 6-9 витков. Перемещение свободного конца пружины значительно больше, чем у одновитковой пружины.

Обычно датчики в виде одновитковой пружины могут применяться в показывающих приборах.

В большинстве случаев это будет связано с тем, что в самопишущих приборах датчик должен иметь большое усилие, которого хватит для преодоления трения. В нашем разделе также есть статья о том, как работает тензодатчик.

Плоская гофрированная мембрана будет использоваться отдельно. При необходимости также можно применять плоскую прорезиненную ткань, которая будет плотно соединена с плоской калиброванной пружиной. Гармоникообразная мембрана отличается от других, так как имеет наибольшую чувствительность.

Сильфонные приборы предназначаются для измерения и записи избыточного давления в схемах автоматизации.

Кроме этого, подобные устройства также можно использовать в качестве вторичных приборов к устройствам, которые имеют приспособление для пневматической передачи показаний на расстояние.

Пружинные датчики давления в схемах позволяют преобразовывать механическое перемещение в электрический сигнал с помощью индуктивного или контактного датчика.

На рисунке выше представлена схема датчика давления типа МЭД. Здесь сначала давление будет восприниматься трубчатой манометрической пружиной. В дальнейшем оно будет преобразовываться в перемещение конца манометрической трубки. Это перемещение также может передаваться плунжеру трансформаторного датчика. Вторичным приборов в этой конструкции считается устройство типа ЭПИД.

Специалисты сообщают, что датчики расхода на сегодняшний день могут быть:

  1. Механические.
  2. Термические.
  3. Ионизационные.
  4. Индукционные.
  5. Акустические.

Датчики расхода будут действовать по принципу возникновения перепада давления в сужающем устройстве. Перепад давления в этом случае является функцией расхода.

Сужающее устройство считается воспринимающим органом датчика расхода. Датчики расхода постоянного перепада (ротаметры) используются для регулирования сечения с целью поддерживания постоянным перепада давления.

Если будет интересно, тогда можете прочесть про принцип работы термопары.

На рисунке, который расположен выше вам предоставлена схема ротаметра с индуктивным датчиком. Ротаметр состоит из:

  • Конической трубки.
  • Поплавка.

Во время движения жидкости или газа в кольцевом зазоре между поплавком и трубками будет создаваться перепад давления, который в дальнейшем будет создавать силу, действующую навстречу силе веса поплавка, который здесь расположен.

Ротаметры на сегодняшний день могут выполняться, как показывающие приборы и как датчики. Обмотка индуктивного датчика располагается на трубке сопла. Железный поплавок в свою очередь будет являться сердечником катушки индуктивного датчика.

При изменении расхода поплавок может перемещаться и соответственно изменять индуктивность катушки.

Датчики уровня

В последнее время наиболее распространенными устройствами считаются поплавковые датчики. Поплавковый датчик будет состоять из: поплавка, промежуточного и выходного органа. Поплавок – это орган, который позволяет воспринимать уровень жидкости. Преобразующий орган позволяет механическое воздействие выходному органу.

Датчики уровня могут быть основаны на измерении веса и гидростатического давления, а также на использовании электрических свойств жидкости.

Отечественная промышленность старается выпускать датчики давления разнообразного типа. Теперь вы точно знаете, принцип работы датчиков давления, расхода и уровня. Надеемся, что эта информация была полезной и интересной.

Источник: http://vse-elektrichestvo.ru/elektromontazh/kipia/princip-raboty-datchikov-davleniya.html

Датчики давления

Датчики (преобразователи) давления компании Dwyer instruments представляют собой чувствительный элемент, в виде диафрагмы или наполняемой камеры, соединённой с преобразователем движения чувствительного элемента. При изменении давления измеряемая среда приводит в движение чувствительный элемент, который в свою очередь связан с преобразователем движения, в результате чего измеряемая величина преобразуется в электрический сигнал.

На сегодняшний день датчики давления можно подразделить на несколько категорий, групп и подгрупп:

  1. В зависимости от класса опасности окружающей или измеряемой среды, датчики делятся на три основные группы:
    • Взрывозащищённые датчики давления необходимы в случаях контакта прибора с опасной измеряемой и (или) окружающей средой. В этом случае высока вероятность возникновения воспламенения внутри прибора, что, в обычном исполнении привело бы к взрывопожароопасной ситуации. Взрывозащищённое исполнение исключает внештатные ситуации за счёт изоляции электрических компонентов и частей взрывонепроницаемой оболочкой, которая предотвращает проникновение пламени и(или) взрыва за пределы прибора.
    • Искробезопасные датчики давления используются в тех случаях, когда прибор находится в непосредственном контакте с взрывопожароопасной окружающей средой. В этом случае случае, в конструкции применяются всевозможные выпрямители электрических сигналов, которые сводят к минимуму скачки электроэнергии, которые в свою очередь приводят к образованию искр и в следствии чего к внештатной ситуации. Примечание: для использования датчика давления в искробезопасном исполнении обязательно наличие барьера искрозащиты.
    • Датчики в общепромышленном исполнении применяются во всех случаях за исключением условий описанных в П 1.1 и 1.2
  2. Так же датчики давления можно классифицировать по типу выходного сигнала:
    • С аналоговым выходным сигналом являются самыми распространёнными на сегодняшний день, так как они просты в изготовлении, и не требуют больших затрат при производстве. Выходной сигнал 4-20 мА, 0-10 или 0-5 Вольт считываются большинством ПЛК (программируемый логический контроллер), а питание от 12 до 24 Вольт доступно для большинства приложений.
    • С цифровым выходным сигналом являются более совершенными с технической точки зрения, так как обладают значительно большими возможностями по подключениям. Датчики с цифровым выходным сигналом можно подключать как через ПЛК, для системы автоматизации, так и напрямую к ПК, для снятия показаний без дополнительных устройств.
  3. Все датчики давления подразделяются на несколько групп в зависимости от класса точности:
    • Точные датчики давления имеют погрешность не более 3% от полной шкалы и используются в большинстве известных приложениях, так как: водоочистка, водоподготовка, системы вентиляции и кондиционирования (ОВИК), котельное оборудование и многих других.
    • Высокоточные датчики давления имеют погрешность не более 0,5%, что позволяет применять приборы в самых ответственных приложениях: нефтехимическая и газовая промышленность, лабораторные измерения, и многих других приложениях, где точность показаний приборов является основной характеристикой при измерениях.
    • Эталонные датчики давления используются в основном для поверки и калибровки других датчиков давления, в следствии чего к этим датчикам предъявляются самые жёсткие требования по погрешности измерений, которая, обычно не превышает показателя в 0,05%.

Так же, если вы выбираете датчик давления воды, жидкости, датчик давления воздуха или датчик давления газа, необходимо учитывать ряд других параметров, среди которых химическая стойкость, температурный диапазон, класс защиты корпуса и многих других.
Если Вы сомневаетесь в выборе необходимого прибора, позвоните нам, и специалисты компании ОЛИЛ помогут подобрать прибор наиболее подходящий под ваши конкретные условия.

Мы предлагаем только прямые поставки контрольно-измерительных приборов с завода Dwyer. Список и описание продукции полностью соответствует печатному каталогу и оригинальному сайту компании-изготовителя. Поделитесь с коллегами ссылкой на эти приборы, нажмите на кнопку социальной сети:

Источник: https://dwyer.ru/catalog/datchiki-davleniya

Датчики давления

Добрый день, уважаемые читатели блога  nasos-pump.ru

В рубрике «Принадлежности» рассмотрим датчики давления. В данной статье мы будем рассматривать датчики давления для воды. Давление – это одна из важнейших величин многих технологических процессов. Датчики давления предназначены для преобразования избыточного давления пара или жидкости в аналоговый выходной сигнал по току или напряжению.

Обычно это 4-20 мА по току или 0-10 вольт по напряжению. Питание датчика производится от источника постоянного тока. На рынке присутствует огромное количество датчиков давления различных фирм производителей Danfoss, Honeywell, Keller, Wika и др. Отличаются датчики давления оного производителя от другого рабочими параметрами и характеристиками.

Например, рабочим давлением, пределом и точностью измерений, допустимыми условиями эксплуатации, динамическим и частотным диапазоном, принципом преобразования давления в электрический сигнал и т.д.

Датчики давления предназначены для использования в системах автоматического контроля и регулирования, а также управления технологическими процессами в системах водоснабжения и отопления, вентиляции и кондиционирования, расходомерах и счетчиках и т.д.

Основные характеристики, устройство и принцип работа датчика

На практике наиболее часто приходилось применять датчики давления фирмы Danfoss и Keller. Основные характеристики этих датчиков приведены в таблице.

Датчики давления характеристики

В нержавеющем корпусе объединены измерительный блок давления и электронный преобразователь. Для преобразования давления жидкости или газа в электрический сигнал применяются тензометрический эффект. В датчике давления тензорезистор закреплен специальным способом на жесткой мембране. Его сопротивление изменяется при деформации мембраны.

Измеряемое давление через подсоединительный штуцер подается в рабочую полость датчика и вызывает деформацию мембраны. Это приводит к изменению геометрии резистора и, следовательно, к изменению его сопротивления. Тензорезистор включен в схему измерительного моста, который преобразует изменение сопротивления в сигнал постоянного тока.

Так как деформация жесткой мембраны незначительна, то для повышения чувствительности датчика применяют полупроводниковые кремниевые тензорезисторы обладающие более высокой чувствительностью. Электрический сигнал из измерительного блока подается в электронный преобразователь.

Преобразователь осуществляет преобразование поступающего сигнала в стандартный выходной сигнал постоянного тока 4 – 20 мА для двух проводных подключений или напряжения 0 – 10 вольт для трех проводных подключений. Точность измерения обеспечивается лазерной калибровкой, температурной компенсацией и помехозащищенностью.

Датчики давления защищены от выхода из строя при обрыве питающих или сигнальных проводов, при коротком замыкании или при подключении напряжения питания обратной полярности. Датчики Keller PA 21 Y изначально изготавливаются с отрезком двух жильного кабеля длиной 2 метра заключенного в силиконовую изоляцию.

Монтаж и схемы электрических подключений датчика давления

Монтировать датчики желательно на прямолинейных участках, как можно дальше от насосов, запорных устройств (кранов, задвижек) компенсаторов, уголков других гидравлических  устройств.

Особенно не рекомендуется монтировать датчики перед запорными устройствами, если измеряемая среда – жидкость. Если в системе возможны гидравлические удары, то для корректной работы датчика необходимо использовать гидроаккумулятор объемом 8 – 20 литров.

Запрещается применять силу при монтаже изделия. Для установки и демонтажа датчика на его корпусе предусмотрен шестигранник под гаечный ключ. Для возможности проведения технического обслуживания датчика монтировать его следует после отсекающего крана или вентиля со сливом.

Запрещается демонтировать изделие при наличии давления в системе. Пример подключения датчика давления в установках повышения давления  приведен на (Рис. 1).

Схемы электрических подключений датчиков давления фирм Danfoss и Keller приведены на (Рис. 2) и (Рис. 3). В зависимости от вида выходного сигнала ток или напряжение приведены две схемы электрических подключений.

Схема электрических подключений датчика Danfoss

Схема электрических подключений датчика Keller

 Эксплуатация, обслуживание и ремонт датчиков

Датчики давления довольно таки надежные изделия. Средний срок наработки датчиков на отказ составляет 100000 часов при соблюдении условий эксплуатации и проведении технического обслуживания. Срок службы составляет не менее 10 лет. Конструктивно датчики разборке и ремонту не подлежат.

Для проведения технического обслуживания и отсоединения датчика от магистрали необходимо производить после закрытия отсекающего крана. Затем необходимо открыть слив и сбросить давление из датчика и гидроаккумулятора. После проведенных действий можно производить работы по техническому обслуживанию датчика и гидроаккумулятора.

Техническое обслуживание датчика заключается в периодической поверке и очистке рабочей полости от отложения солей и накипи.

Спасибо за внимание.

Источник: https://nasos-pump.ru/datchiki-davleniya/

Большая Энциклопедия Нефти и Газа

Cтраница 1

Датчик давления и измерительный мост.  [1]

Электрические датчики давления широко используют при измерении давлений, переменных во времени. Погрешности обусловлены гистерезисом деформируемых элементов, температурными влияниями и погрешностями электрических схем.  [2]

Электрический датчик давления масла установлен на блоке цилиндров. По электрической схеме датчик соединен с сигнальной лампой, помещенной на щитке приборов.  [3]

Электрический датчик давления Минитран имеет взрывозащищен-ное исполнение и поэтому, так же как датчик ДДП-1, может устанавливаться непосредственно у места отбора давления газа. Он имеет унифицированный токовый сигнал, питается от общего для двух датчиков блока.  [4]

Электрические датчики давления ГСП имеют такие же измерительные блоки, как и пневматические. Они снабжаются электросиловыми линейными преобразователями.  [5]

Структурная схема преобразователя с магнитной компенсацией.  [6]

В унифицированныхэлектрических датчиках давления широко применяются электроизмерительные преобразователи, принцип действия которых основан на электросиловой компенсации с использованием обратных электромеханических преобразователей — измерительных механизмов.  [7]

Регулятор соотношения давлений рычажного типа.  [8]

Обратная связь осуществляется с помощьюэлектрических датчиков давления, включенных в мостовую схему, и дополнительных сопротивлений, учитывающих потери на трение в поршнях.  [9]

Заметим, что при использованииэлектрических датчиков давления погрешность, обусловленная центробежными силами, не возникает.  [11]

Эти трубы были соединены сэлектрическими датчиками давления ( 0 — 1 или 0 — 2 гс / см2), позволяющими непрерывно регистрировать давление; показания датчиков передавались на самопишущее устройство.  [12]

Масло по отдельному каналу подается кэлектрическому датчику давления масла.

Распределительный вал, расположенный на головке блока цилиндров, его опоры, кулачки, рычаги и стержни клапанов смазываются через каналы в блоке, головке и через центральный канал в распределительном валу.

Цепь механизма распределения смазывается маслом, которое выходит из передней опоры распределительного вала и передней втулки вала привода масляного насоса; масло разбрызгивается центробежной силой звездочек указанных валов через радиальные отверстия на звездочках.  [13]

В настоящее время в соответствии с ГСП выпускаютсяэлектрические датчики давления с унифицированным электропреобразователем постоянного тока.  [15]

Страницы:      1    2    3

Источник: http://www.ngpedia.ru/id655390p1.html

http://www.bdsensors.ru/

  • Диапазоны давления от 0…0,04; до 0…40 бар; -1…0 бар
  • Основная погрешность 0,5 / 0,35 / 0,25 / 0,2 % ДИ
  • Выходной сигнал 0/4…20 мA; 0…10 В; 0…5 В; HART-протокол и др. (опция Ex-исполнение)
  • Диапазоны давления от 0…1 до 0…160 бар
  • Основная погрешность 1,0 % ДИ
  • Выходной сигнал 4…20 мA, 0…10 В
  • Диапазоны давления от 0…1 до 0…600 бар; от -1…6 до -1…25 бар
  • Основная погрешность 0,5 % ДИ
  • Выходной сигнал 4…20 мA, 0,5…4,5 В (ратиометрический)
  • Диапазоны давления от 0…6 до 0…160 бар
  • Основная погрешность 1,0 % ДИ
  • Выходной сигнал 4…20 мA
  • Диапазоны давления от 0…1 до 0…400 бар
  • Основная погрешность 0,5 % ДИ
  • Выходной сигнал 4…20 мA
  • Диапазоны давления от 0…1 до 0…400 бар
  • Основная погрешность 0,5 % ДИ
  • Выходной сигнал 4…20 мA, 0…10 В
  • Диапазоны давления от 0…0,006 до 0…1 бар
  • Основная погрешность 1,0 / 0,5 % ДИ
  • Выходной сигнал 0/4…20 мA, 0…10 В, 0…5 В, HART-протокол (опция Ex-исполнение)
  • Диапазоны давления от 0…60 до 0…600 бар
  • Основная погрешность 0,35 / 0,25 / 0,2 % ДИ
  • Выходной сигнал 0/4…20 мA, 0…10 В, 0…5 В, HART-протокол и др. (опция Ex-исполнение)
  • Диапазоны давления от 0…0,4 до 0…40 бар
  • Основная погрешность 0,1 % ДИ
  • Выходной сигнал 4…20 мA (опция Ex-исполнение), RS 485/HART, RS 485/Modbus, HART-протокол
  • Диапазоны давления от 0…0,1 до 0…600 бар
  • Основная погрешность 0,1 % ДИ
  • Выходной сигнал 3-х пров. 4…20 мА, 0,1…10 В
  • Диапазоны давления от 0…60 до 0…600 бар
  • Основная погрешность 0,1 % ДИ
  • Выходной сигнал 4…20 мA (опция Ex-исполнение), RS 485/HART, RS 485/Modbus, HART-протокол
  • Диапазоны давления от 0…600 до 0…2200 бар
  • Основная погрешность 0,35 % ДИ
  • Выходной сигнал 0/4…20 мA, 0…10 В (опция Ex-исполнение)
  • Диапазоны давления от 0…0,4 до 0…600 бар
  • Основная погрешность 0,5 / 0,25 % ДИ
  • Выходной сигнал 0/4…20 мA, 0…10 В, 0…5 В, HART-протокол и др. (опция Ex-исполнение)
  • Диапазоны давления от 0…0,1 до 0…600 бар
  • Основная погрешность 1,0 / 0,5 / 0,35 / 0,25 % ДИ
  • Выходной сигнал 0/4…20 мА, 0…10 В, 0…5 В, HART, Modbus
  • Диапазоны давления от 0…0,4 до 0…40 бар
  • Основная погрешность 0,1 % ДИ
  • Выходной сигнал 0/4…20 мА, 0…10 В, 0…5 В
  • Диапазоны давления от 0…1 до 0…400 бар
  • Основная погрешность 0,5 / 0,25 % ДИ
  • Выходной сигнал 0/4…20 мА, 0…10 В, 0…5 В, HART-протокол
  • Диапазоны давления от 0…0,4 до 0…600 бар
  • Основная погрешность 0,1 % ДИ
  • Выходной сигнал 4…20 мА, HART-протокол
  • Диапазоны давления от 0…0,06 до 0…20 бар
  • Основная погрешность 0,2 % ДИ
  • Выходной сигнал 4…20 мА, HART-протокол
  • Диапазоны давления от 0…2000 до 0…6000 бар
  • Основная погрешность 0,5 / 0,25 % ДИ
  • Выходной сигнал 4…20 мA, 0…10 В
  • Диапазоны давления от 0…0,1 до 0…600 бар
  • Основная погрешность 0,5 / 0,35 / 0,25 % ДИ
  • Выходной сигнал 4…20 мA
  • Диапазоны давления от 0…0,4 до 0…20 бар
  • Основная погрешность 0,25 / 0,10 % ДИ
  • Выходной сигнал 4…20 мA
  • Диапазоны давления от 0…0,4 до 0…600 бар; -1…0 бар
  • Основная погрешность 0,1 % ДИ
  • Выходной сигнал 4…20 мА, HART-протокол
  • Диапазоны давления от 0…0,0125 до 0…250 бар; -1…0 бар
  • Основная погрешность 0,075 % ДИ
  • Выходной сигнал 4…20 мА, HART-протокол
  • Диапазоны давления от 0…0,4 до 0…40 бар
  • Основная погрешность 0,1 % ДИ
  • Выходной сигнал 4…20 мA (опция Ex-исполнение), RS 485/HART, RS 485/Modbus, HART-протокол
  • Диапазоны давления от 0…0,1 до 0…600 бар
  • Основная погрешность 0,1 % ДИ
  • Выходной сигнал 3-х пров. 4…20 мА, 0,1…10 В
  • Диапазоны давления от 0…60 до 0…600 бар
  • Основная погрешность 0,1 % ДИ
  • Выходной сигнал 4…20 мA (опция Ex-исполнение), RS 485/HART, RS 485/Modbus, HART-протокол
  • Диапазоны давления от 0…0,4 до 0…40 бар
  • Основная погрешность 0,1 % ДИ
  • Выходной сигнал 0/4…20 мА, 0…10 В, 0…5 В
  • Диапазоны давления от 0…0,4 до 0…20 бар
  • Основная погрешность 0,25 / 0,10 % ДИ
  • Выходной сигнал 4…20 мA
  • Диапазоны давления от 0…0,4 до 0…600 бар; -1…0 бар
  • Основная погрешность 0,1 % ДИ
  • Выходной сигнал 4…20 мА, HART-протокол
  • Диапазоны давления от 0…0,0125 до 0…250 бар; -1…0 бар
  • Основная погрешность 0,075 % ДИ
  • Выходной сигнал 4…20 мА, HART-протокол
  • Диапазоны давления от 0…0,04; до 0…40 бар; -1…0 бар
  • Основная погрешность 0,5 / 0,35 / 0,25 / 0,2 % ДИ
  • Выходной сигнал 0/4…20 мA; 0…10 В; 0…5 В; HART-протокол и др. (опция Ex-исполнение)
  • Диапазоны давления от 0…1 до 0…160 бар
  • Основная погрешность 1,0 % ДИ
  • Выходной сигнал 4…20 мA, 0…10 В
  • Диапазоны давления от 0…1 до 0…600 бар; от -1…6 до -1…25 бар
  • Основная погрешность 0,5 % ДИ
  • Выходной сигнал 4…20 мA, 0,5…4,5 В (ратиометрический)
  • Диапазоны давления от 0…6 до 0…160 бар
  • Основная погрешность 1,0 % ДИ
  • Выходной сигнал 4…20 мA
  • Диапазоны давления от 0…1 до 0…400 бар
  • Основная погрешность 0,5 % ДИ
  • Выходной сигнал 4…20 мA
  • Диапазоны давления от 0…1 до 0…400 бар
  • Основная погрешность 0,5 % ДИ
  • Выходной сигнал 4…20 мA, 0…10 В
  • Диапазоны давления от 0…0,006 до 0…1 бар
  • Основная погрешность 1,0 / 0,5 % ДИ
  • Выходной сигнал 0/4…20 мA, 0…10 В, 0…5 В, HART-протокол (опция Ex-исполнение)
  • Диапазоны давления от 0…60 до 0…600 бар
  • Основная погрешность 0,35 / 0,25 / 0,2 % ДИ
  • Выходной сигнал 0/4…20 мA, 0…10 В, 0…5 В, HART-протокол и др. (опция Ex-исполнение)
  • Диапазоны давления от 0…600 до 0…2200 бар
  • Основная погрешность 0,35 % ДИ
  • Выходной сигнал 0/4…20 мA, 0…10 В (опция Ex-исполнение)
  • Диапазоны давления от 0…0,4 до 0…600 бар
  • Основная погрешность 0,5 / 0,25 % ДИ
  • Выходной сигнал 0/4…20 мA, 0…10 В, 0…5 В, HART-протокол и др. (опция Ex-исполнение)
  • Диапазоны давления от 0…0,1 до 0…600 бар
  • Основная погрешность 1,0 / 0,5 / 0,35 / 0,25 % ДИ
  • Выходной сигнал 0/4…20 мА, 0…10 В, 0…5 В, HART, Modbus
  • Диапазоны давления от 0…1 до 0…400 бар
  • Основная погрешность 0,5 / 0,25 % ДИ
  • Выходной сигнал 0/4…20 мА, 0…10 В, 0…5 В, HART-протокол
  • Диапазоны давления от 0…0,4 до 0…600 бар
  • Основная погрешность 0,1 % ДИ
  • Выходной сигнал 4…20 мА, HART-протокол
  • Диапазоны давления от 0…0,06 до 0…20 бар
  • Основная погрешность 0,2 % ДИ
  • Выходной сигнал 4…20 мА, HART-протокол
  • Диапазоны давления от 0…2000 до 0…6000 бар
  • Основная погрешность 0,5 / 0,25 % ДИ
  • Выходной сигнал 4…20 мA, 0…10 В
  • Диапазоны давления от 0…0,1 до 0…600 бар
  • Основная погрешность 0,5 / 0,35 / 0,25 % ДИ
  • Выходной сигнал 4…20 мA

Источник: http://www.BDSensors.ru/ru/davlenie/datchiki-davleniya/

Ссылка на основную публикацию