Схемы включения трансформаторов напряжения

Схемы подключения различных трансформаторов напряжения

Трансформаторами напряжения, как правило, называют разновидность трансформаторов, которые предназначены не для передачи мощности, а для гальванического разделения высоковольтной стороны от низковольтной. Такие трансформаторы предназначены для питания измерительных и управляющих приборов.

На «высокой» стороне различных трансформаторов напряжения, естественно, напряжение  может быть разным, это и 6000, и 35000 вольт и даже много более, а вот на «низкой» стороне (на вторичной обмотке) оно не превышает 100 вольт. Это очень удобно для унификации приборов управления.

Если делать измерительные приборы и приборы управления, а это в основном реле, на высокое напряжение, то они, во-первых, будут очень большими, а во-вторых, очень опасными в обслуживании.

Коэффициент трансформации указан на самом трансформаторе и может выглядеть как Кu = 6000/100, либо просто 35000/100. Разделив одно число на другое, получим в первом случае этот коэффициент 60, во втором 350.

Данные трансформаторы бывают как «сухие», в которых в качестве изоляции используется электрокартон. Они применяются, обычно, для напряжений до 1000 вольт. Пример НОС-0,5. Где, Н означает напряжение, имеется ввиду трансформатор напряжения, О – однофазный, С – сухой, 0,5 – 500 вольт (0,5кВ).

А так же масляные: НТМИ, НОМ, 3НОМ, НТМК, в которых масло играет роль, как изолятора, так и охладителя. И литые, если быть точным, то с литой изоляцией (3НОЛ – трехобмоточный трансформатор напряжения однофазный с литой изоляцией), в которых все обмотки и магнитопровод залиты эпоксидной смолой.

Устройство трансформаторов напряжения

Как и все трансформаторы, как это было сказано выше, данный тип трансформаторов имеют как первичные обмотки (высоковольтные), так и вторичные (низковольтные). Различают однофазные и трехфазные трансформаторы напряжения. В каждом из них имеется магнитопровод, к которому предъявляются довольно высокие требования.

Дело в том, что чем больше рассеивание магнитного потока в таком трансформаторе, тем больше погрешность измерения. Кстати. В зависимости от погрешности различают трансформаторы по классу точности различаются (0,2; 0,5; 1; 3). Чем выше число, тем больше погрешность измерений.

К примеру, трансформатор с классом точности 0,2 может допустить погрешность не выше 0,2% от измеряемой величины напряжения, а, соответственно, класса точности 3 – не более 3%. Обозначения на схемах и натуральное исполнение бывает сильно отличаются друг от друга.

Однофазный двухобмоточный трансформатор представлен на рисунке слева, так, как он выглядит на самом деле. На схемах он обозначается как:

Обратите внимание, трансформатор понижающий, во вторичной обмотке меньше витков, чем в первичной, и это отражено визуально на схеме в данном случае, хотя это и не всегда делается. Кроме того, начала и концы обмоток обозначены на схеме и на самом трансформаторе. Первичные обмотки обозначаются большими (прописными) буквами AиX. Вторичные – малыми (строчными) буквами a и x.

Существуют и трехобмоточные однофазные трансформаторы, у которых две вторичных обмотки. Одна из которых является основной, а вторая дополнительной. Дополнительная обмотка служит для контроля изоляции и имеет аббревиатуру КИЗ. Маркировка выводов этой обмотки следующая ад — начало обмотки, хд — конец обмотки.

Трехфазные трансформаторы выпускаются с двумя типами магнитороводов: трехстержневые и пятистержневые.

Начала и концы здесь обозначаются несколько по-другому. На первичных обмотках начала обозначаются буквами A, B иC согласно фазам к которым они будут подключаться, а концы буквами X,Y и Z. Вторичные обмотки, соответственно, малыми буквами a,b,cи x,y,z.

Магнитные потоки создаваемые катушками AX, BY, CZ компенсируют друг друга при нормальных условиях работы.

Но вот в случае пробоя одной из фаз на землю в стержнях магнитопровода создается слишком большой дисбаланс и часть потока будет закольцовываться через воздух, что создает сильный нагрев трансформатора из-за повышения номинального тока в обмотках.

Дополнительные стержни, как раз и призваны взять на себя образовавшиеся разбалансированные потоки и не допустить перегрева трансформатора. При этом в нем наматываются дополнительные обмотки, но об этом несколько позже.

Схемы соединений обмоток трансформаторов напряжения

Самым простым способом измерения межфазного напряжения является включение однофазного двухобмоточного трансформатора напряжения по схеме представленной на рисунке слева.

При этом на концах вторичной обмотки имеем напряжение соответствующее межфазному ВС, но уменьшенное с учетом коэффициента трансформации.

Все три межфазных напряжения можно измерять при помощи двух однофазных трансформатора подключенных определенным способом.

В трехфазных трансформаторах первичные обмотки всегда подключается по схеме «звезда».

Вторичные обмотки могут подключаться как по схеме «звезда» так и по схеме «треугольник».

При левом подключении на точках вывода вторичной обмотки мы имеем возможность измерения межфазных напряжений.

При правом подключении, по схеме так называемого разомкнутого треугольника, мы можем выявить факт короткого замыкания или обрыва провода в одной их фаз на высокой стороне.

Выводы при этом маркируются 01 и 02, поскольку при нормальных условиях работы между этими точками нет напряжения.

Для подключения реле защиты применяются, как уже было сказано выше дополнительные обмотки в трехобмоточных трансформаторах напряжения. Пот пример подключения таких трансформаторов в трехфазную сеть. При этом концы обмоток заземляются как в первичной, так и во вторичной обмотке.

Вот еще несколько вариантов подключения однофазных трансформаторов для измерения межфазных и фазных напряжений, а так же для питания аппаратуры управления.

Более сложные варианты подключения трансформаторов напряжения, содержащих большее количество обмоток изучается в специальном курсе электротехники.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Источник: http://elektronchic.ru/elektrotexnika/sxemy-podklyucheniya-razlichnyx-transformatorov-napryazheniya.html

Схемы соединений трансформаторов напряжения

⇐ ПредыдущаяСтр 16 из 75Следующая ⇒

Для питания цепей релейной защиты используются между­фазные напряжения и фазные — относительно земли, а также симметричные составляющие этих напряжений.

Ниже рассматриваются типовые схемы соединений трансфор­маторов напряжения (ТН) и схемы фильтров, позволяющие полу­чить указанные напряжения.

а) Схема соединений трансформаторов напряжения в звезду

Схема, приведенная на рис. 6-7, а, предназначена для полу­чения напряжения фаз относительно земли и междуфазных (ли­нейных) напряжений.

Три первичные обмотки трансформатора напряжения ТН1 соединяются в звезду.

Начала каждой обмотки (выводы А, В, С) присоединяются к соответствующей фазе линии, а концы X, У, Z объединяются в общую точку (нейтраль Н1) и заземляются.

При таком включении к каждой первичной обмотке ТН1 под­водится напряжение фазы линии относительно земли, которое затем трансформируется во вторичные об­мотки. Концы вторичных обмоток ТН1 (х, у, z на рис. 6-7, а) также соединяются в звезду, нейтраль которой Н2 связывается проводом с нулевой точкой Н3 нагрузки (обмотки реле 1, 2, 3).

В приведенной схеме нейтраль первичной обмотки (точка Н1) жестко связана с землей и имеет поэтому ее потенциал, а ней­траль нагрузки Н3 соединена с нейтралью вторичных обмоток Н2 и всегда имеет потенциал точки Н2.

При такой схеме фазные напряжения на вторичной стороне соответствуют фазным напряжениям относительно земли первич­ной стороны.

Если по каким-либо причинам первичная нейтраль трансфор­матора напряжения (Н1) окажется разземленной, как показано на рис. 6-7, б, то ее потенциал станет отличным от потенциала земли.

Из теории электротехники известно [Л. 29, 95], что потенциал изолированной от земли нейтрали, образованной тремя соединен­ными в звезду одинаковыми сопротивлениями z (какими являются сопротивления первичных обмоток ТН2 на рис. 6-7, б) находится

в точке О' (рис. 6-7, в), лежащей на пересечении диан треугольника линейных напряжений

Аналогичным образом на фазные напряжения влияет обрыв или отсутствие нулевого провода во вторичной цепи.

При отсутствии связи между Н2 и Н3 точка Н3 становится изолированной нейтралью; как было показано выше, сумма на­пряжений на обмотках реле (1, 2 и 3) во всех случаях будет равна нулю, и, следовательно, на векторной диаграмме потенциал точки Н3 совпадет с точкой О, если принять для простоты, что nн = 1.

Из всего сказанного следует очень важный вывод, что зазем­ление нейтрали первичной обмотки ТН и наличие нулевого провода во вторичной цепи являются обязательным условием для получе­ния фазных напряжений относительно земли.

Соединение трансформаторов напряжения по схеме λ/λ может выполняться по 6-й и 12-й группам. Типовым является соедине­ние по 12-й группе, показанное на рис. 6-7.

Рассмотренная схема соединений может быть выполнена по­средством трех однофазных трансформаторов напряжения или одного трехфазного пятистержневого трансформатора напряже­ния.

Трехфазные трехстержневые трансформаторы напряжения на могут применяться для данной схемы, так как в их магнитопроводе нет пути для замыкания магнитных потоков нулевой последовательности Фо, создаваемых током I0 в первичных об­мотках при замыканиях на землю в сети. В этом случае поток Фо замыкается через воздух по пути с большим магнитным со-

б) Схема соединения обмоток трансформаторов напряжения в открытый треугольник

Следовательно, на зажимах разомкнутого треугольника полу­чается напряжение, пропорциональное напряжению нулевой по­следовательности.

В нормальных условиях напряжения фаз симметричны и равны в сумме нулю. Поэтому в нормальном режиме Uр = 0.

При к. з. без земли сумма фазных напряжений всегда равна нулю, ибо в этом случае векторы напряжений не содержат составляющей нулевой последовательности. По­этому напряжение Uрив этом случае также равно нулю. И только при замыканиях на землю геометрическая сумма напряжений фаз относительно земли не равна нулю за счет появления в них составляющей U0.

В результате этого на зажимах разом­кнутого треугольника появляется остаточ­ное напряжение, равное = 3U0/пн.

Напряжения прямой и обратной после­довательностей образуют симметричные звез­ды и поэтому при суммировании в цепи разомкнутого треугольника всегда дают нуль на его зажимах.

Таким образом, рассмотренная схема яв­ляется фильтром, пропускающим только на­пряжение нулевой последовательности. Рас­смотренная схема соединения очень удобна и получила широкое распространение на практике.

Необходимым условием работы рассмот­ренной схемы в качестве фильтра U0 является заземление нейтрали первичной обмотки ТН.

При отсутствии заземления к первичным обмоткам ТН будут подводиться вместо фазных напряжений относительно земли фаз­ные напряжения относительно изолированной нейтрали (см. § 6-3, а). Эти напряжения не содержат U 0, и их сумма всегда равна нулю. Поэтому при замыканиях на землю напряжение на выходе схемы будет отсутствовать.

Применяя однофазные трансформаторы напряжения с двумя вторичными обмотками, можно соединить одну вторичную обмотку по схеме звезды, а вторую — разомкнутым треугольником (рис. 6-11) и получить, таким образом, от одного трансформатора напряжения три вида напряжении: фазные, между­фазные и нулевой последовательности.

Номинальное вторичное напряжение у обмот­ки, предназначенной для соединения в разомкну­тый треугольник, принимается равным для сетей с заземленной нейтралью 100 В и для сетей с изолированной нейтралью 100/3 В.

г) Схема соединения обмоток трехфазных трансформаторов напряжения в фильтр на­пряжения нулевой последовательности

Для получения напряжения нулевой последовательности от трехфазного пятистержневого транс­форматора (рис.

6-8) на каждом из его основных стержней 1, 2 и 3 выполняется дополнительная (третья) обмотка, соединяемая, как и в предыдущем случае, по схеме разомкнутого треугольника.

Читайте также:  Для чего в электрических цепях используются конденсаторы

Напряжение на выводах этой обмотки появляется, так же как и в преды­дущем случае, только при к. з. на землю, когда возникают магнитные потоки нулевой последовательности, замыкающиеся по четвертому и пятому стержням магнитопровода.

Схемы с пятистержневым трансформатором, показанные на рис. 6-8, позволяют получать одновременно с напряжением ну­левой последовательности фазные и междуфазные напряжения.

Источник: https://lektsia.com/3×7702.html

Схемы и группы соединений обмоток трансформаторов

Дата публикации: 23 марта 2013.

Обозначения начал и концов обмоток трансформаторов приводятся в таблице 1.

Таблица 1

Обозначения начал и концов обмоток трансформатора

Наименование обмоток Однофазные трансформаторы Трехфазные трансформаторы
Обмотки высшего напряжения (ВН): начала ……………………………………… концы ……………………………………… Обмотки низшего напряжения (НН): начала ……………………………………… концы ……………………………………… Обмотки среднего напряжения (СН): начала ………………………………………концы ………………………………………

A
X

a
x

Am
Xm

A, B, C
X, Y, Z

a, b, c
x, y, z

Am, Bm, Cm
Xm, Ym, Zm

Зажимы нулевой точки при соединении в звезду обозначаются О, Оm, о.

Схемы соединения обмоток трехфазных трансформаторов

В большинстве случаев обмотки трехфазных трансформаторов соединяются либо в звезду (Y), либо в треугольник (Δ).

Выбор схемы соединения обмоток зависит от ряда причин.

Например, для сетей с напряжением 35 кВ и более выгодно соединить обмотку трансформатора в звезду и заземлить нулевую точку, так как при этом напряжение выводов трансформатора и проводов линии передачи относительно земли будет всегда в √3 раза меньше линейного, что приводит к снижению стоимости изоляции. Осветительные лампы накаливания более низкого напряжения имеют большую световую отдачу, а осветительные сети выгодно строить на более высокое напряжение. Поэтому вторичные обмотки трансформаторов, питающих осветительные сети, соединяются обычно в звезду и осветительные лампы включаются на фазное напряжение – между линейными и нулевыми проводниками. В ряде случаев, когда ток обмотки невелик, при соединении в звезду обмотки получаются более дешевыми, так как число витков при этом уменьшается в √3 раза, а сечение проводов увеличивается также в √3 раза, вследствие чего трудоемкость изготовления обмотки и стоимость обмоточного провода уменьшаются. С другой стороны, с точки зрения влияния высших гармоник и поведения трансформатора при несимметричных нагрузках целесообразно соединять одну из обмоток трансформатора в треугольник.

Рисунок 1. Соединение трехфазной обмотки зигзагом

В некоторых случаях применяется также соединение обмоток по схеме зигзага (рисунок 1), когда фаза обмотки разделяется на две части, которые располагаются на разных стержнях и соединяются последовательно.

При этом вторая половина обмотки подключается по отношению к первой встречно (рисунок 1, а), так как в этом случае электродвижущая сила (э. д. с.) фазы будет в √3 раза больше (рисунок 1, б), чем при согласном включении (рисунок 1, в). Однако при встречном включении половин обмотки ее э.

д. с. (√3 E1) будет все же в 2 / √3 = 1,15 раза меньше, чем при расположении обеих половин на одном стержне (2 E1). Поэтому расход обмоточного провода при соединении зигзагом увеличивается на 15%.

Вследствие этого соединение зигзагом используется только в специальных случаях, когда возможна неравномерная нагрузка фаз с наличием токов нулевой последовательности.

Группы соединений обмоток

Для включения трансформатора на параллельную работу с другими трансформаторами имеет значение сдвиг фаз между э. д. с. первичной и вторичной обмоток. Для характеристики этого сдвига вводится понятие о группе соединений обмоток.

Рисунок 2. Группы соединений однофазного трансформатора

На рисунке 2, а показаны обмотки однофазного трансформатора, намотанные по левой винтовой линии и называемые поэтому «левыми», причем у обеих обмоток начала A, a находятся сверху, а концы X, x – снизу. Будем считать э. д. с. положительной, если она действует от конца обмотки к ее началу.

Обмотки на рисунке 2, а сцепляются с одним и тем же потоком. Вследствие этого э. д. с. этих обмоток в каждый момент времени действуют в одинаковых направлениях – от концов к началам или наоборот, то есть они одновременно положительны или отрицательны. Поэтому э. д. с.

EA и Ea совпадают по фазе, как показано на рисунке 2, а. Если же у одной из обмоток переменить начало и конец (рисунок 2, б), то направление ее э. д. с., действующей от конца к началу, изменится на обратное и э. д. с. EA и Ea будут иметь сдвиг 180°.

Такой же результат получится, если на рисунке 2, а одну из обмоток выполнит «правой».

Для обозначения сдвига фаз обмоток трансформатора векторы их линейных э. д. с. уподобляют стрелкам часового циферблата, причем вектор обмотки ВН принимают за минутную стрелку и считают, что на циферблате часов она направлена на цифру 12, а вектор обмотки НН принимают за часовую стрелку.

Тогда на рисунке 2, а часы будут показывать 0 или 12 часов, и такое соединение обмоток поэтому называется группой 0 (ранее в этом случае применялось название «группа 12»). На рисунке 2, б часы будут показывать 6 часов, и такое соединение называется группой 6.

Соответственно соединение обмоток однофазных трансформаторов согласно рисунку 2, а обозначается I/I-0, а согласно рисунку 2, б – I/I-6. В России стандартизированы и изготовляются однофазные трансформаторы только соединением I/I-0.

Рисунок 3. Трехфазный трансформатор со схемой и группой соединений Y/Y-0

Рассмотрим теперь трехфазный трансформатор с соединением обмоток ВН и НН в звезду, причем предположим, что 1) обмотки ВН и НН имеют одинаковую намотку (например, «правую»); 2) начала и концы обмоток расположены одинаково (например, концы снизу, а начала сверху); и 3) одноименные обмотки (например, A и a, а также B и b, C и c) находятся на общих стержнях (рисунок 3, а). Тогда звезды фазных э.

д. с. и треугольники линейных э. д. с. будут иметь вид, показанный на рисунке 3, б. При этом одноименные векторы линейных э. д. с. (например, EAB и Eab) направлены одинаково, то есть совпадают по фазе, и при расположении их на циферблате часов, согласно изложенному правилу, часы будут показывать 0 часов (рисунок 3, в). Поэтому схема и группа соединений такого трансформатора обозначается Y/Y-0.

Если на рисунке 3, а произвести круговую перемаркировку (или перестановку) фаз обмотки НН и разместить фазу a на среднем стержне, фазу b – на правом и c – на левом, то на векторной диаграмме НН (рисунок 3, б) произойдет круговая перестановка букв a, b, c по часовой стрелке.

При этом получится группа соединений 4, а при обратной круговой перестановке будет группа соединений 8. Если переменить местами начала и концы обмоток, то получатся еще группы соединений 6, 10 и 2. Значит, при соединении по схеме Y/Y возможно шесть групп соединений, причем все они четные.

Такие же группы соединений можно получить при схеме соединений Δ/Δ.

Рисунок 4. Трехфазный трансформатор со схемой и группой соединений Y/Δ-11

Допустим теперь, что обмотки соединены по схеме Y/Δ, как показано на рисунке 4, а, и соблюдены те же условия, которые были оговорены для рисунка 3, а. Тогда векторные диаграммы э. д. с. обмоток ВН и НН будут иметь вид, показанный на рисунке 4, б. При этом одноименные линейные э. д. с.

(напрмер, EAB и Eab) будут сдвинуты на 30° и расположатся на циферблате часов, как показано на рисунке 4, в. Соединение обмоток такого трансформатора обозначаются Y/Δ-11.

При круговых перестановках фаз и при перемаркировке начал и концов одной из обмоток (или при установке вместо перемычек ay, bz, cx  в треугольнике на рисунке 4, а перемычек az, bx, cy) можно получить также другие нечетные группы: 1, 3, 5, 7 и 9.

Большой разнобой в схемах и группах соединений изготовляемых трансформаторов нежелателен. Поэтому ГОСТ 11677-85,»Трансформаторы силовые.

Общие технические условия», предусматривает изготовление трехфазных силовых трансформаторов со следующими группами соединений обмоток: Y/Y0-0, Y0/Y-0, Y/Δ-11, Y0/Δ-11, Y/Z0-11,  Δ/Y0-11, и Δ /Δ-0.

При этом первым обозначено соединение обмотки ВН, вторым – соединение обмотки НН, а индекс «0» указывает на то, что наружу выводится нулевая точка обмотки.

Источник: Вольдек А. И., «Электрические машины. Учебник для технических учебных заведений» – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.

Источник: https://www.electromechanics.ru/transformers/480-schemes-and-groups-of-connections-of-windings-of-transformers.html

Подключение трансформатора тока

Главная » Освещение » Трансформаторы » Подключение трансформатора тока

Представьте себе, что у вас оказался трансформатор. Вы о нем совершенно ничего не знаете. Именно поэтому мы поместили эту статью, в которой расскажем, как подключить трансформатор. Подключение трансформатора – это достаточно сложный процесс, который выполнять должны только профессионалы. Здесь вы узнаете, какие операции необходимо проделать перед подключением трансформатора.

Для начала вам необходимо знать, что собою представляет это устройство. Трансформатор – это достаточно сложное устройство, которое необходимо для того, чтобы преобразовывать напряжение. Обычно он имеет две или более обмоток.

По назначению эти устройства могут быть как понижающими, так и повышающими.
Существуют также и автотрансформаторы. Основной их особенностью считается то, что первичная и вторичная обмотка должна подключаться вместе. Их особенность заключается в том, что они преобразовывают величину тока.

Обычно их используют для подключения контрольно-измерительных приборов.

Определяем трансформатор

Например, если у вас имеется трансформатор, но вы не знаете какой именно тогда вам следует знать, на что нужно обратить внимание? Для того чтобы определить что это за устройство необходимо посмотреть на количество выводов обмоток.

Трехфазные устройства могут иметь 4 вывода, а однофазные трансформаторы два вывода. Если устройство вы желаете использовать в квартире, тогда вам подойдет однофазный трансформатор.

Подключение трехфазного трансформатора осуществляется только на предприятиях.

После этого вам необходимо определить тип трансформатора. Основной особенностью этого трансформатора считается мощный проводник вокруг, которого располагается обмотка. К особенности автотрансформаторов относятся небольшие габариты и наличие регулятора. В быту эти трансформаторы встретить можно достаточно редко.

Определяем обмотку

Для того чтобы определить обмотку вам необходимо использовать мультиметр. Если трансформатор будет понижающим, тогда сопротивление в первичной обмотке будет больше чем у вторичной. Обычно размер первичной обмотки немного больше чем во вторичной. Если трансформатор содержит в себе несколько обмоток, тогда необходимо измерить сопротивление каждой из них.

Подключение трансформатора напряжения

Сейчас мы вам расскажем, как подключить понижающий трансформатор. Для начала вам необходимо определить, какой параметр тока необходим потребителю. Для бытовых приборов необходим постоянный ток.

В электрической сети обычно течет переменный ток и поэтому вам потребуется выпрямитель. В зависимости от вашего прибора вторичную обмотку необходимо подключить через выпрямитель.

Перед тем как подключать трансформатор вам необходимо узнать как сделать трансформатор своими руками. Первичная обмотка будет подключаться прямо в сеть.

Как мы уже говорили в этой статье, трансформаторы тока должны применяться вместе с измерительными приборами. Тороидальный трансформатор подключается точно так.

Подключение трансформатора предполагает в себе подключение первичной и вторичной обмотки. Первичную обмотку необходимо подключать в цепь, а вторичную обмотку к измерительным приборам.

Читайте также:  Измерение электрической энергии

Помните, что вторичная обмотка всегда должна иметь низкую нагрузку.

Как видите, монтаж трансформатора – это несложно, и выполнить этот процесс можно самостоятельно.

К вашему вниманию: трансформатор для галогенных ламп. 

Источник: http://vse-elektrichestvo.ru/osveshhenie/transformatory/podklyuchenie-transformatora.html

Описание и технические характеристики трансформатора напряжения НТМИ

Трансформатор типа НТМИ – оборудование, способное в больших масштабах преобразовывать, измерять электрический ток переменного типа для работы защиты, сигнализации и прочего подобного оборудования.

Агрегат позволяет контролировать состояние изоляционных слоев в сети. Чтобы правильно выбрать измерительные трансформаторы, необходимо рассмотреть технические характеристики, особенности ввода в эксплуатацию.

Устройство

Трансформатор типа НТМИ 6 (10) кВ применимо для изменения показателей напряжения, учета электроэнергии в сети. Применяются в системах с нейтралью изолированного класса.

Пользователи спрашивают при покупке, обязательно ли заземление для представленных конструкций. Паспорт прибора дает четкий ответ. В автоматических сетях обязательна нейтраль и заземление.

Схема подключения трансформатора, обслуживание агрегата представлены производителем в инструкции.

Емкость трансформатора является металлической конструкцией. На крышке предусмотрены крюки, позволяющие транспортировать и устанавливать прибор на выделенной территории. Внизу конструкция имеет пробку для масла. Здесь установлен болт заземления. Сверху агрегата находятся выходы ВН, НН. Отверстие для доливки масляного охладителя находится здесь же, закрывается пробкой.

Трансформатор категории НТМИ 10 (6) кВ наделен стальным сердечником. Контур катушек медный.

Сборка и введение в эксплуатацию

Трансформатор напряжения группы НТМИ 10 (6) кВ имеет различные габариты и массу (в соответствии с мощностью). Стоимость также отличается в соответствии с указанными характеристиками.

Сборка производится согласно инструкции производителя. Обмотки необходимо зафиксировать на стержнях магнитопривода, монтируется ярмо. Электрическая коммутация производится в соответствии с существующими стандартами.

Выполняется процедура сушки.

Активную часть устанавливают в бак. Контролируется качество соединения обмоток пока агрегат не под напряжением. Оценивается коэффициент трансформации, погрешность при угловом сдвиге векторов фазы. Трансформатор напряжения категории НТМИ 6 (10) кВ нужно тщательно просушить. Проверяются соединения. Крышка ставится на предусмотренное место, заливается масло в бак.

Уровень охладительной жидкости контролируется. Качество масла соответствует требованиям стандартов. Монтируются дополнительные аксессуары.

Обозначение

Агрегаты представленного типа обозначаются по установленной системе. Маркировка позволяет определить особенности аппаратуры. Обслуживающий персонал должен видеть табличку с информацией о виде аппаратуры. Расшифровка данных следующая: НТМИ-6(10) – УЗ (ТЗ).

  • Н — трансформатор напряжения.
  • Т — трехфазный.
  • М – охладитель системы масляного типа, циркуляция естественная.
  • И – измерительный, предусмотрена дополнительная обмотка типа КИЗ.
  • 6(10) – параметры обмотки выводов ВН, кВ.
  • УЗ (ТЗ) – разновидность климатического размещения.

Информация наносится на специальную табличку, которая крепится винтами к корпусу трансформатора. Маркировку необходимо разместить в доступном для обозрения месте.

Особенности эксплуатации

Установки представленной категории эксплуатируются строго в соответствии с общепризнанными стандартами. Ввод в эксплуатацию, контроль состояния оборудования производится обученными, опытными сотрудниками.

Представленная аппаратура устанавливается в районах с умеренным и холодным типом климата. Рядом запрещается хранить пожароопасные, взрывчатые, химические вещества, газы, жидкости.

Установка агрегата производится на высоте не более 1 км над уровнем моря. Конструкция не рассчитана на работу в условиях вибрации, механических ударов или тряски. Рабочий цикл достаточно длительный. Отключение аппаратуры производится для проведения планового ремонта, обслуживания. При появлении признаков неисправности, в аварийной ситуации, питание немедленно отключается.

Температура окружающей среды может достигать от +40 до -45ºС для категории У1. Климатическое исполнение ХЛ1 разрешает эксплуатацию в диапазоне от +40 до -60ºС. Относительная влажность составляет 80%. Перечисленные условия способствуют длительной, эффективной работе оборудования.

Рассмотрев особенности, принцип работы и обозначения трансформаторов НТМИ, можно правильно выбрать устройство, соответствующее потребностям потребителей.

Источник: https://ProTransformatory.ru/vidy/transformator-ntmi

ТРАНСФОРМАТОРЫ

   В этой статье мы поговорим о трансформаторах, устройствах способных повышать или понижать напряжение при переменном токе. Существуют различные по конструкции и предназначению трансформаторы. Например есть как однофазные, так и трехфазные. На фото изображен однофазный трансформатор:

Трансформатор однофазный

   Трансформатор напряжения соответственно будет называться повышающим, если на выходе со вторичной обмотки напряжение выше, чем в первичной, и понижающим, если, напряжение во вторичной обмотке ниже, чем в первичной. На рисунке ниже изображена схема работы трансформатора:

Принципиальная схема трансформатора

   Красным (на рисунке ниже) обозначена первичная обмотка, синим вторичная, также изображен сердечник трансформатора, собранный из пластин специальной электротехнической стали. Буквами U1 обозначено напряжение первичной обмотки.

Буквами I1 обозначен ток первичной обмотки. U2 обозначено напряжение на вторичной обмотке, I2 ток во вторичной. В трансформаторе две или более обмоток индуктивно связаны.

Также трансформаторы могут использоваться для гальванической развязки цепей.

Принцип работы трансформатора

Принцип действия трансформатора

   При подаче напряжения на первичную обмотку в ней наводится ЭДС самоиндукции.

Силовые линии магнитного поля пронизывают не только ту катушку, которая наводит ток, но и расположенную на том же сердечнике вторую катушку (вторичную обмотку) и наводит также в ней ЭДС самоиндукции.

Отношение числа витков первичной обмотки к вторичной называется Коэффициентом трансформации. Записывается это так:

Коэффициент трансформации — формула

   Если коэффициент трансформации меньше единицы, то трансформатор повышающий, если больше единицы, понижающий. Разберем на небольшом примере: w1 количество витков первичной обмотки равно условно равно 300, w2 количество витков вторичной обмотки равно 20. Делим 300 на 20, получаем 15.

Число больше единицы, значит трансформатор понижающий. Допустим, мы мотали трансформатор с 220 вольт, на более низкое напряжение, и нам теперь нужно посчитать, какое будет напряжение на вторичной обмотке. Подставляем цифры: U2=U1кт = 22015 = 14.66 вольт. Напряжение на выходе с вторичной обмотки будет равно 14.

66 вольт.

Трансформаторы на схемах

   Обозначается на принципиальных схемах трансформатор так:

Обозначение трансформатора на схемах

   На следующем рисунке изображен трансформатор с несколькими вторичными обмотками:

Трансформатор с двумя вторичными обмотками

   Цифрой «1» обозначена первичная обмотка (слева), цифрами 2 и 3 обозначены вторичные обмотки (справа).

Сварочные трансформаторы

   Существуют специальные сварочные трансформаторы. 

Сварочный трансформатор

   Сварочный трансформатор предназначен для сварки электрической дугой, он работает как понижающий трансформатор, снижая напряжение на вторичной обмотке, до необходимой величины для сварки. Напряжение вторичной обмотки бывает не более 80 Вольт. Сварочные трансформаторы рассчитаны на кратковременные замыкания выхода вторичной обмотки, при этом образуется электрическая дуга, и трансформатор при этом не выходит из строя, в отличие от силового трансформатора.  

Силовые трансформаторы

   Электроэнергия передается по высоковольтным линиям от генераторов, где она вырабатывается до высоковольтных подстанций потребителя, в целях сокращения потерь, при высоком напряжении равном 35-110 киловольт и выше.

Перед тем, как мы сможем использовать эту энергию, её напряжение нужно понизить до 380 вольт, которое подводится к электрощитовым, находящимся в подвалах многоквартирных домов. Трехфазные трансформаторы обычно бывают рассчитаны на большую мощность.

В электросетях на трансформаторных подстанциях стоят трансформаторы понижающие напряжение с 35 или 110 киловольт, до 6 или 10 киловольт, наверное все видели такие трансформаторы величиной с небольшой дом:

Фото высоковольтный трансформатор

   Трансформаторы с 6-10 киловольт на 380 вольт расположены вблизи потребителей. Такие трансформаторы стоят на трансформаторных подстанциях расположенных во многих дворах. Они поменьше размерами, но вместе с ВН (выключателями нагрузки) которые ставятся перед трансформатором и вводными автоматами и фидерами могут занимать двух этажное здание. 

Трансформатор 6 киловольт

   У трехфазных трансформаторов обмотки соединяются не так, как у однофазных трансформаторов. Они могут соединяться в звезду, треугольник и звезду с выведенной нейтралью. На следующем рисунке приведена как пример одна из схем соединения обмоток высокого напряжении и низкого напряжения трехфазного трансформатора:

Пример соединения обмоток силового трансформатора

   Трансформаторы существуют не только напряжения, но и тока. Такие трансформаторы применяют для безопасного измерения тока при высоком напряжении. Обозначаются на схемах трансформаторы тока следующим образом:

Изображение на схемах трансформатор тока

   На фото далее изображены именно такие трансформаторы тока:

Трансформатор тока — фото

   Существуют также, так называемые, автотрансформаторы. В этих трансформаторах обмотки имеют не только магнитную связь, но и электрическую. Так обозначается на схемах лабораторный автотрансформатор (ЛАТР):

Лабораторный автотрансформатор — изображение на схеме

   Используется ЛАТР таким образом, что включая в работу часть обмотки, с помощью регулятора, можно получить различные напряжения на выходе. Фотографию лабораторного автотрансформатора можно видеть ниже:

Фото ЛАТР

   В электротехнике существуют схемы безопасного включения ЛАТРа с гальванической развязкой с помощью трансформатора:

Безопасный ЛАТР изображение на схеме

   Для согласования сопротивления разных частей схемы служит согласующий трансформатор. Также находят применение измерительные трансформаторы для измерения очень больших или очень маленьких величин напряжения и тока.

Тороидальные трансформаторы

   Промышленность изготавливает и так называемые тороидальные трансформаторы. Один из таких изображен на фото: 

Фотография — тороидальный трансформатор

   Преимущества таких трансформаторов по сравнению с трансформаторами обычного исполнения заключаются в более высоком КПД, меньше звуковой дребезг железа при работе, низкие значения полей рассеяния и меньший размер и вес.

   Сердечники трансформаторов, в зависимости от конструкции могут быть различными, они набираются из пластин магнитомягкого материала, на рисунке ниже приведены примеры сердечников:

Сердечники трансформаторов — рисунок

   Вот в кратце и вся основная информация о трансформаторах в радиоэлектронике, более подробно разные частные случаи можно рассмотреть на форуме. Автор AKV.

   Форум по трансформаторам

Источник: http://radioskot.ru/publ/nachinajushhim/transformatory/5-1-0-761

Схемы соединения измерительных трансформаторов напряжения. трансформаторы напряжения схемы включения

ГлавнаяТрансформаторТрансформаторы напряжения схемы включения

Схема включения однофазного трансформатора напряжения представлена на рис. 1, а. Предохранители FV1 и FV2 защищают сеть высокого напряжения от повреждений первичной обмотки TV. Предохранители FV3 и FV4 (или автоматические выключатели) защищают TV от повреждений в нагрузке.

Схема соединения двух однофазных трансформаторов напряжения TV1 и TV2 в открытый треугольник (рис. 2). Трансформаторы включены на два междуфазных напряжения, например UAB и UBC. Напряжение на зажимах вторичных обмоток TV всегда пропорционально междуфазным напряжениям, подведенным с первичной стороны. Между проводами вторичной цепи включается нагрузка (реле).

Схема позволяет получать все три междуфазных напряжения UAB, UBC и UCA (не рекомендуется присоединять нагрузку между точками а и с, так как через трансформаторы будет протекать дополнительный ток нагрузки, вызывающий повышение погрешности). 

Рис. 1. Схема включения измерительного трансформатора напряжения

Рис. 2. Схема соединения двух однофазных трансформаторов напряжения в открытый треугольник

Схема соединения трех однофазных трансформаторов напряжения в звезду, приведенная на рис. 3, предназначена для получения напряжений фаз относительно земли и междуфазных (линейных) напряжений. Три первичные обмотки TV соединяются в звезду. Начала каждой обмотки Л присоединяются к соответствующим фазам линии, а концы X объединяются в общую точку (нейтраль N1) и заземляются.

Читайте также:  Плавка гололеда на проводах линий электропередачи напряжением 6 - 10 кв

При таком включении к каждой первичной обмотке трансформатора напряжения (ТН) подводится напряжение фазы линии электропередачи (ЛЭП) относительно земли.

Концы вторичных обмоток ТН (х) также соединяются в звезду, нейтраль которой N2 связывается с нулевой точкой нагрузки.

В приведенной схеме нейтраль первичной обмотки (точка N1) жестко связана с землей и имеет потенциал, равный нулю, такой же потенциал будут иметь нейтраль N2 и связанная с ней нейтраль нагрузки. 

Рис. 3. Схема соединение трех однофазных трансформаторов напряжения в звезду

При такой схеме фазные напряжения на вторичной стороне соответствуют фазным напряжениям относительно земли первичной стороны. Заземление нейтрали первичной обмотки трансформатора напряжения и наличие нулевого провода во вторичной цепи являются обязательным условием для получения фазных напряжений относительно земли.

Схема соединения однофазных трансформаторов напряжения в фильтр напряжения нулевой последовательности (рис. 4).

Первичные обмотки соединены в звезду с заземленной нейтралью, а вторичные — последовательно, образуя незамкнутый треугольник. К зажимам разомкнутых вершин треугольника подсоединяются реле напряжения KV.

Напряжение U2 на зажимах разомкнутого треугольника равно геометрической сумме напряжений вторичных обмоток: 

Рис. 4. Схема соединения трех однофазных трансформаторов напряжения в фильтр напряжений нулевой последовательности

Рассмотренная схема является фильтром нулевой последовательности (НП). Необходимым условием работы схемы в качестве фильтра НП является заземление нейтрали первичной обмотки ТН. Применяя однофазные ТН с двумя вторичными обмотками, можно соединить одну из них по схеме звезды, а вторую — по схеме разомкнутого треугольника (рис. 5). 

Рис. 5. Схема включения трех однофазных трансформаторов напряжения для контроля изоляции

Номинальное вторичное напряжение у обмотки, предназначенной для соединения в разомкнутый треугольник, принимается равным для сетей с заземленной нейтралью 100 В, а для сетей с изолированной нейтралью 100/3 В.

Схема включения трехфазного трехстержневого трансформатора напряжения показана на рис. 6. Нейтраль ТН заземлена.

Рис. 6. Схема включения трехфазного трехстержневого трансформатора напряжения в системе с заземленной нейтралью

Схема соединения обмоток трехфазного трансформатора напряжения в фильтр напряжения НП показана на рис. 5.

Трехфазные трехстержневые ТН для данной схемы применяться не могут, так как в их магнитопроводе отсутствуют пути для замыкания магнитных потоков НП Фо, создаваемых током 10 в первичных обмотках при замыкании на землю в сети. В этом случае поток Фо замыкается через воздух по пути с большим магнитным сопротивлением.

Это приводит к уменьшению сопротивления НП трансформатора и резкому увеличению Iнам. Повышенный ток Iнам вызывает недопустимый нагрев трансформатора, в связи с чем применение трехстержневых трансформаторов напряжения недопустимо.

В пятистержневых трансформаторах для замыкания потоков Ф0 служат четвертый и пятый стержни магнитопровода (рис. 7). Для получения 3U0 от трехфазного пятистержневого трансформатора напряжения на каждом из его основных стержней 7, 2 и 3 выполняется дополнительная (третья) обмотка, соединяемая по схеме разомкнутого треугольника.

Напряжение на выводах этой обмотки появляется только при КЗ на землю, когда возникают магнитные потоки НП, замыкающиеся по 4 и 5 стержням маг-нитопровода.

Схемы с пятистержневым ТН позволяют получать одновременно с напряжением НП фазные и междуфазные напряжения. Применяются для измерения напряжений и контроля изоляции в сетях с изолированной нейтралью.

Для этих же целей можно использовать схему рис. 5 с тремя однофазными ТН.

При измерении мощности или энергии трехфазной системы применяется схема включения трансформатора напряжения, приведенная на рис.8 .

Рис. 7. Пути замыкания магнитных потоков нулевой последовательности в трехфазном пятистержневом трансформаторе напряжения

Рис. 8. Схема включения трехфазного трехстержневого трансформатора напряжения для измерения мощности по методу двух ваттметров

transformator-service.ru

Подключение трансформатора тока: инструкция + фото

Представьте себе, что у вас оказался трансформатор. Вы о нем совершенно ничего не знаете. Именно поэтому мы поместили эту статью, в которой расскажем, как подключить трансформатор. Подключение трансформатора – это достаточно сложный процесс, который выполнять должны только профессионалы. Здесь вы узнаете, какие операции необходимо проделать перед подключением трансформатора.

Для начала вам необходимо знать, что собою представляет это устройство. Трансформатор – это достаточно сложное устройство, которое необходимо для того, чтобы преобразовывать напряжение. Обычно он имеет две или более обмоток.

По назначению эти устройства могут быть как понижающими, так и повышающими.Существуют также и автотрансформаторы. Основной их особенностью считается то, что первичная и вторичная обмотка должна подключаться вместе. Их особенность заключается в том, что они преобразовывают величину тока.

Обычно их используют для подключения контрольно-измерительных приборов.

Определяем трансформатор

Например, если у вас имеется трансформатор, но вы не знаете какой именно тогда вам следует знать, на что нужно обратить внимание? Для того чтобы определить что это за устройство необходимо посмотреть на количество выводов обмоток.

Трехфазные устройства могут иметь 4 вывода, а однофазные трансформаторы два вывода. Если устройство вы желаете использовать в квартире, тогда вам подойдет однофазный трансформатор.

Подключение трехфазного трансформатора осуществляется только на предприятиях.

После этого вам необходимо определить тип трансформатора. Основной особенностью этого трансформатора считается мощный проводник вокруг, которого располагается обмотка. К особенности автотрансформаторов относятся небольшие габариты и наличие регулятора. В быту эти трансформаторы встретить можно достаточно редко.

Определяем обмотку

Для того чтобы определить обмотку вам необходимо использовать мультиметр. Если трансформатор будет понижающим, тогда сопротивление в первичной обмотке будет больше чем у вторичной. Обычно размер первичной обмотки немного больше чем во вторичной. Если трансформатор содержит в себе несколько обмоток, тогда необходимо измерить сопротивление каждой из них.

Подключение трансформатора напряжения

Сейчас мы вам расскажем, как подключить понижающий трансформатор. Для начала вам необходимо определить, какой параметр тока необходим потребителю. Для бытовых приборов необходим постоянный ток.

В электрической сети обычно течет переменный ток и поэтому вам потребуется выпрямитель. В зависимости от вашего прибора вторичную обмотку необходимо подключить через выпрямитель.

Перед тем как подключать трансформатор вам необходимо узнать как сделать трансформатор своими руками. Первичная обмотка будет подключаться прямо в сеть.

Подключение трансформатора тока

Как мы уже говорили в этой статье, трансформаторы тока должны применяться вместе с измерительными приборами. Тороидальный трансформатор подключается точно так.

Подключение трансформатора предполагает в себе подключение первичной и вторичной обмотки. Первичную обмотку необходимо подключать в цепь, а вторичную обмотку к измерительным приборам.

Помните, что вторичная обмотка всегда должна иметь низкую нагрузку.

Как видите, монтаж трансформатора – это несложно, и выполнить этот процесс можно самостоятельно.К вашему вниманию: трансформатор для галогенных ламп. 

vse-elektrichestvo.ru

Схемы соединения трансформаторов напряжения

Схема соединения трансформаторов напряжения в звезду, приведенная на рис.6.5, а, предназначена для получения напряжений фаз относительно земли и междуфазных (линейных) напряжений. Три первичные обмотки TV1 соединяются в звезду. Начала каждой обмотки (А, В, C)присоединяются к соответствующим фазам ЛЭП, а концы X, Y, Z объединяются в общую точку (нейтраль N1)и заземляются.

При таком включении к каждой первичной обмотке TV1 подводится напряжение фазы ЛЭП относительно земли. Концы вторичных обмоток TV1 (х, у, z на рис.6.5, а) также соединяются в звезду, нейтраль которой N2 связывается с нулевой точкой нагрузки N3 (сопротивления 1, 2, 3).

В приведенной схеме нейтраль первичной обмотки (точка N1)жестко связана с землей и имеет потенциал, равный нулю, такой же потенциал будет иметь нейтраль N2 и связанная с ней нейтраль нагрузки N3. При такой схеме фазные напряжения на вторичной стороне соответствуют фазным напряжениям относительно земли первичной стороны.

Заземление нейтрали первичной обмотки ТН и наличие нулевого провода во вторичной цепи являются обязательным условием для получения фазных напряжений относительно земли.

Соединение обмоток ТН по схеме y/y обычно выполняется по 12-й группе. Эта схема может быть осуществлена посредством трех однофазных ТН или одного трехфазного пятистержневого ТН.

Трехфазные трехстержневые ТН для данной схемы применяться не могут, так как в их магнитопроводе отсутствуют пути для замыкания магнитных потоков НП Ф0, создаваемых током I0 в первичных обмотках при замыканиях на землю в сети.

В этом случае поток Ф0 замыкается через воздух по пути с большим магнитным сопротивлением. Это приводит к уменьшению сопротивления НП трансформатора и резкому увеличению Iнам.

Повышенный Iнам вызывает недопустимый нагрев трансформатора, в связи с чем применение трехстержневых ТНнедопустимо. В пятистержневых трансформаторах для замыкания потоков служат четвертый и пятый стержни магнитопровода (рис.6.6).

Схема соединений обмоток ТН в открытый треугольник изображена на рис.6.7. Она выполняется при помощи двух однофазных ТН, включенных на два междуфазных напряжения, например UAB и UBC .

Напряжение на зажимах вторичных обмоток ТН всегда пропорционально междуфазным напряжениям, подведенным с первичной стороны. Между проводами вторичной цепи включаются реле.

Схема позволяет получать все три междуфазных напряжения UAB, UBC и UAC.

Схема соединений обмоток однофазных ТН в фильтр напряжения НП выполняется посредством трех однофазных ТН, как показано на рис.6.8.

Первичные обмотки соединены в звезду с заземленной нейтралью, а вторичные – последовательно, образуя незамкнутый треугольник. К зажимам разомкнутых вершин треугольника подсоединяются реле.

Напряжение Upна зажимах разомкнутого треугольника равно геометрической сумме напряжений вторичных обмоток: Up = Uа + Ub + Uc.

Так как сумма трех фазных напряжений равна утроенному напряжению НП, выражая вторичные напряжения через первичные, получаем

(6.4)

В нормальных условиях напряжения фаз симметричны, Up = 0. При КЗ без земли также Up = 3U0= 0 (см. гл. 1). При КЗ на землю (одно- и двухфазных) на зажимах разомкнутого треугольника ТН появляется напряжение Up= 3U0/KU.

Напряжения прямой и обратной последовательностей образуют симметричные звезды и поэтому при суммировании в цепи разомкнутого треугольника всегда дают нуль на его зажимах.

Рассмотренная схема является фильтром НП. Необходимым условием работы схемы вкачестве фильтра НП является заземление нейтрали первичной обмотки ТН.

Применяя однофазные ТН с двумя вторичными обмотками, можно соединить одну из них по схеме звезды, а вторую – по схеме разомкнутого треугольника (рис.6.9).

Номинальное вторичное напряжение у обмотки, предназначенной для соединения в разомкнутый треугольник, принимается равным для сетей с заземленной нейтралью 100 В, а для сетей с изолированной нейтралью 100/3 В.

Схема соединения обмоток трехфазных ТН в фильтр напряжения НП. Для получения 3U0 от трехфазного пятистержневого ТН (см. рис.6.6) на каждом из его основных стержней 1, 2 и 3 выполняется дополнительная (третья) обмотка, соединяемая по схеме разомкнутого треугольника.

Напряжение на выводах этой обмотки появляется только при КЗ на землю, когда возникают магнитные потоки НП, замыкающиеся по четвертому и пятому стержням магнитопровода.

Схемы с пятистержневым ТН позволяют получать одновременно с напряжением НП фазные и междуфазные напряжения.

Источник: https://szemp.ru/transformator/transformatory-napryazheniya-shemy-vklyucheniya.html

Ссылка на основную публикацию