Как электроэнергия поступает с генераторов электростанций в энергосистему

Очерки по истории электротехники

Страница 36 из 41

6.4. Возникновение районных электростанций и энергетических систем

Создание трехфазной системы явилось важнейшим этапом в развитии техники. Эта система вывела проблему передачи электроэнергии, а вместе с ней и электротехнику из кризисного состояния, которое сложилось в 80-х годах прошлого века.

Производительные силы получили новую техническую базу, во многом сп собствовавшую углублению и расширению процесса концентрации и централизации производства. Электрическая энергии которая могла теперь передаваться в удаленные промышленные районы, вызвала коренную реконструкцию энергохозяйства промышленных предприятий и начала внедряться в технологию.

Процесс электрификации постепенно захватывал все новые области производственной деятельности, революционизировал развитие производительных сил и не мог не привести к глубоким социальным изменениям.Первой в мире эксплуатировавшейся трехфазном электростанцией была Лауфенская.

После закрытия Франкфуртской выставки электростанция в Лауфене перешла в собственность города Хейльбронна, расположенного в 12 км от Лауфена. Эта установка была пущена в эксплуатацию в начале 1892 г. На гидростанции были установлены два одинаковых трехфазных синхронных генератора. Напряжение (фазное) при помощи трансформаторов повышалось с 50 до 5000 В.

Электроэнергия использовалась для питания всей городской осветительной сети, а также ряда небольших заводов и мастерских. Понижающие трансформаторы устанавливались непосредственно у потребителей.В том же 1892 г. была сдана в эксплуатацию линия Бюлах-Эр-ликон (Швейцария).

Машины для электростанции были спроектированы еще во время подготовки Франкфуртской выставки швейцарской фирмой «Эрликон». У водопада в Бюлахе была построена гидроэлектростанция с тремя трехфазными генераторами мощностью 150 кВт каждый. Электроэнергия передавалась на расстояние 23 км для электроснабжения завода.

Вслед за этими первыми установками началось довольно быстрое строительство ряда электростанции, причем наибольшее их число было в Германии.Известные трудности в развитии электрификации на базе трехфазных систем возникали в связи с тем, что уже раньше в городах были построены станции постоянного или однофазного токов, а иногда и двухфазные.

Владельцы и акционеры этих станций и электрических сетей всячески препятствовали внедрению трехфазной системы. Некоторым выходом явилось сочетание трехфазной электропередачи с распределением энергии на постоянном токе. Например, в 1893 г. в Боккенгейме (пригород Франкфурта) была сооружена электростанция с двумя трехфазными генераторами (по 150 кВт).

Напряженно при помощи трансформаторов повышалось с 80 до 700 В, и энергии передавалась на подстанцию, находившуюся н центре промышленного района и удаленную от электростанции на 1,2 км. Большая часть энергии на подстанции преобразовывалась двигатель-генераторной установкой в энергию постоянного тока, которая и распределялась для электрического освещения.

Аналогичное решение было принято несколько позднее при строительстве электростанции и северной части Берлина.Первая трехфазная установка в Америке была сооружена в конце 1893 г. и Калифорнии. Гидроэлектростанция располагала двумя генераторами мощностью по 250 кВт. Or электростанции были проведены две линии генераторного напряжении (2500 В).

Первая из них длиной 12 км поставляла энергию для осветительных целей, а вторая длиной 7,5 км предназначалась для питания трехфазного асинхронного двигателя мощностью 150 кВг.Темпы внедрения трехфазной системы н Америке вначале были заметно ниже, чем в Европе. Это объясняется тем, что одна из крупнейших американских фирм — компания «.

Вестннгауз» — настойчиво пыталась развернуть работы по сооружению электростанции и электрических сетей по системе Тесла. Высшим достижением двухфазной системы считалась грандиозная по тому времени электростанция на Ниагарском водопаде, пущенная в эксплуатацию в 1896 г.В последней трети прошлого пека стали разрабатываться проекты электрической передачи энергии Ниагарских водопадов. В 1889 г. была образована компания, которая приобрела право использования мощности 450 000 л.с. и приступила к подготовке строительства гидроэлектростанции. Совещание крупных инженерен и ученых, созванное для обсуждения вариантов проектов будущей станции, согласилось с предложением применить двухфазную систему Тесла.

Фирме «Вестингауз Электрик» были заказаны три двухфазных генератора по 5000 л.с, каждый с напряжением 2400 В, а другой фирме — гидротурбины по 5150 л.с. В короткий срок были выполнены большие строительные работы, и в ноябре 1896 г. невиданная до тех пор по размерам и мощности электростанция была открыта.

Еще в период строительства Ниагарской ГЭС выяснилось, что спрос на электроэнергию в этом районе будет очень велик и проектная мощность станции окажется недостаточной. Поэтому сразу же началось расширение станции, и к началу текущего столетия число агрегатов было увеличено до восьми, а общая мощность возросла до 40 ООО л.с. На рис. 6.

12 показан машинный зал Ниагарской гидроэлектростанции, который и сегодня выглядит вполне современным.

Пример Ниагарской электростанции показывает, что с первых шагов крупного гидроэлектростроительства дешевая энергия ГЭС получила широкое применение для электрохимических и электротермических процессов (производство алюминия, карборунда, карбида кальция и др.), то есть там, где электроэнергия играет основную технологическую роль.

Американская фирма «Дженерал Электрик», основной оппонент фирмы «Вестингауз», теперь быстро переориентировалась и опять же в противовес конкурирующей фирме развила бурную деятельность по сооружению трехфазных установок. На этот раз проиграла фирма «Вестингауз»: Ниагарская гидроэлектростанция со временем была переоборудована в трехфазную.

Для переходного периода в любой области техники, и в области электротехники в частности весьма характерны попытки комбинирования устаревающих и новых технических решений. Так, в течение почти двух десятилетий, начиная с 1891 г., были сделаны попытки «примирить» трехфазные системы с другими системами.

В эти годы существовали электростанции, на которых одновременно работали генераторы постоянного, переменного однофазного тока, двухфазные и трехфазные или любая их комбинация. Напряжения и частоты были различными, потребители питались по раздельным линиям.

Попытки спасти устаревающие системы, а вместе с ними и освоенное заводами электрооборудование, приводили к созданию комбинированных систем. Такими в частности являлись так называемые моноциклические и полициклические системы переменного токов, а также комбинированная система постоянного и переменного токов.

Наиболее известной из комбинированных систем является схема, предложенная в 1894 г. Скоттом. В основе этой схемы лежит так называемый «трансформатор Скотта», предназначенный для взаимного преобразования токов двухфазной и трехфазной систем.

Однако судьба комбинированных систем, равно как и систем электроснабжения постоянным и однофазным переменным токами, была предрешена, и уже с 1901—1905 гг. в основном сооружаются трехфазные электростанции.

Главной причиной успехов новой системы был быстрый рост промышленного потребления электроэнергии, тогда как построенные ранее станции удовлетворяли главным образом нужды населения. Поэтому первые трехфазные электростанции представляли собой чаще всего станции фабрично-заводского типа.

Перевозка по железным дорогам топлива, особенно его низкокалорийных сортов, обходится дорого. Гораздо удобнее было строить крупные электростанции на месте добычи топлива, на водопаде или на подходящей реке, а вырабатываемую энергию транспортировать по линиям электропередачи в промышленные районы и города.

Трехфазная техника позволяла полностью решать эту проблему. Такие электростанции, расположенные непосредственно у источников энергии, стали называть районными.Первые районные электростанции были построены во второй половине 90-х годов прошлого столетия, а в текущем столетии они составили основу развития электроэнергетики. Первой районной электростанцией считают Ниагарскую ГЭС.

Широкое развитие строительство районных электростанций приобрело с начала XX в. Этому способствовал рост потребления электроэнергии, связанный с внедрением в промышленность электропривода, развитием электрического транспорта и расширением масштабов электрического освещения городов.

Мощности районных электростанций быстро возрастали от нескольких десятков тысяч киловатт (до Перной мировой войны) до 100 000 к Вт (после войны).
На рубеже XIX н XX вв. были уже достаточно выяснены преимущества и возможности трехфазной техники.

Развитие городских се гей делало экономически нецелесообразным существование в одном юроде многих мелких станций, и они закрывались одна за другой.

Электрические станции становились крупными промышленными предприятиями по выработке электроэнергии; сети разных станций объединялись, создавались первые энергетические системы.

Под энергетической системой понимают совокупность электростанций липни электропередачи, подстанций н тепловых сетей, связанных общностью режима и непрерывностью процесса производства и распределения электрической и тепловой энергии, Схема на рис. 6.13 дает представление об энергетической системе и примерном распределении энергии между электростанциями и видами потребления.

До появления районных электростанции электрических систем практически не было. Электростанции работали изолированно, каждая имела свою нагрузку.

При изолированной работе станций не было большой необходимости устанавливать стандартные частоты и напряжения, к последние принимались в зависимости от конкретных условий данной станции.

Последствия этого еще долго сказывались в некоторых странах: например, в США и Японии приходилось подключать на параллельную работу электростанции, работавшие при различных частотах (50 и 60 Гц). Потребность объединить работу нескольких электростанций на общую сеть стала проявляться уже в 90-х годах прошлого столетня.

Было выяснено, что при совместной работе уменьшается необходимый резерв на каждой станции в отдельности, появляется возможность ремонта оборудования без отключения основных потребителей, создаются условия для выравнивания графика нагрузки базисных станций, для более эффективного использования энергетических ресурсов.

Включение на параллельную работу электростанций постоянного тока не вызывало особых затруднений, если эти станции имели одинаковые напряжения и были расположены недалеко одна от другой. Но нередко нужно было объединять работу станций, расположенных в районах, удаленных друг от друга.

Низкое напряжение, принятое на станциях' постоянного тока, не позволяло осуществить непосредственное их соединение линией постоянного тока. В таком случае приходилось прибегать к преобразованию постоянного тока в переменный ток высокого напряжения. На электростанциях устанавливались двигатель-генераторные преобразователи, и станции связывались между собой линией переменного тока.

Первое известное объединение двух трехфазных электростанций было осуществлено в 1892 г. в Швейцарии.

Две небольшие электростанции — в Глэдфельдене (120 кВ • А) и Гохфельдене (360 кВ • А) — соединялись двухкилометровой линией 5 кВ и питали распределительную сеть завода фирмы «Эрликон» по линии передачи протяженностью 24 км при напряжении 13 кВ. Возбуждение генераторов первой станции регулировалось со щита управления второй.

Однако в первое десятилетие посте этого опыта объединение электрических станций еще не получило заметного развития. Положение изменилось только с возникновением крупных районных электростанций, особенно посте 1900 г. Так, в 1905 г.

в США уже работали три крупные для того времени энергетические системы: Южно-Калифорнийская, в районе Сан-Франциско и в штате Юта. Первая из этих систем (компания Эдисона) объединяла четыре гидравлические станции и четыре тепловые с общей установленной мощностью около 12 тыс. кВт.

Сеть этой системы напряжение ем 2—30 кВ имела общую протяженность 960 км и охватывала 18 городов.
Русские электротехники сумели очень быстро оценить достоинства трехфазной системы. Уже в январе 1892 г. на четвертой Петербургской электротехнической выставке проф. И. И.

Боргман демонстрировал трехфазные машины системы Доливо-Добровольского. На этой выставке работали две трехфазные машины мощностью по 15 кВт.

В России первым предприятием с трехфазным электроснабжением был Новороссийский элеватор. Он представлял собой грандиозное сооружение, и задача распределения энергии по его этажам и различным зданиям могла быть решена наилучшим образом только с помощью электричества. Строитель элеватора инженер А. Н. Щенснович решил применить только что ставшую известной трехфазную систему.

Летом 1892 г. швейцарскому заводу фирмы «Броун-Бовери» были заказаны чертежи трехфазных машин. В стедующем 1893 г. элеватор был электрифицирован. Интересно, что все машины по разработанным за границей проектам изготовлялись в собственных мастерских элеватора.На электростанции, построенной рядом с элеватором, были установлены четыре синхронных генератора мощностью 300 кВ каждый.

Таким образом, общая мощность электростанции составляла 1200 кВ • А , то есть это была в то время самая мощная в мире трехфазная электростанция. В помещениях элеватора работали| трехфазные двигатели мощностью 3,5—15 кВт, которые приводили в действие различные машины и механизмы. Часть энергии использовалась для освещения.

Представляет интерес электрификация Охтенского порохового завода в Петербурге. Ее организаторы — В. Н. Чиколев и Р. Э. Класссон — решили осуществить передачу и распределение энергии с помощью трехфазных цепей. На гидростанции работали дна генератора мощностью 120 и 175 кВт.

Оба генератора могли работать независимо друг от друга, так как были построены отдельные линии, но они могли включаться также и на параллельную работу. Наибольшая длина передачи составляла 2,66 км. Нагрузку составляли девять электродвигателей, из которых одни имел мощность 65 л.с, три — по 20 л.с. и пять — 10 л.с. Кроме того, дна двигателя по 1,5 л.с.

были установлены на гидростанции для привета щитовых затворов. Часть энергии для питания дуговых ламп преобразовывалась в энергию постоянного тока.Охтенская установка представляла собой в то время последнее слово техники. Ее основной создатель, выдающийся русский инженер Р. Э.

Классон, дал прогрессивное инженерное решение задачи централизованного электроснабжения промышленного предприятия.Первой в России электропередачей значительной протяженности была установка на Павловском прииске Ленского золотопромышленного района в Сибири. Электростанция была построена в 1896 г. на реке Ныгра.

Здесь были установлены трехфазный генератор 98 кВт, 600 об/мин, 140 В и трансформатор соответствующей мощности, повышавший напряжение до 10 кВ. Электроэнергия передавалась на прииск, удаленный от станции на 21 км. На прииске для привода водоотливных устройств использовались трехфазные асинхронные двигатели мощностью 6,5—25 л.с. (напряжение 260 В).

Так постепенно расширялось в России строительство трехфазных электростанций.С 1897 г. началась электрификация крупных городов (Москва, Петербург, Самара, Киев, Рига, Харьков и др.).Первой районной электростанцией в России была небольшая гидроэлектростанция «Белый уголь* (вблизи г. Ессентуки), построенная в 1903 г.

Читайте также:  Инструмент для снятия изоляции с провода и кабеля

Эта электростанция по четырем воздушным трехфазным линиям протяженностью 6—20 км питала города минераловодской группы.Единственной крупной районной электростанцией дореволюционной России была станция «Электропередача» в г. Богородске (ныне г. Ногинск), сооруженная на средства «Общества электрического освещения 1886 г.».

Руководителем строительства станции и ее сети был Роберт Эдуардович Классон (1868—1926 гг.). На станции были установлены три турбогенератора по 5000 л.с, 1500 об/мин, 6600 В, 50 Гц. Напряжение повышалось при помощи трансформаторной группы до 70 кВ.

Линия передачи Богородск— Москва имела протяженность более 70 км, и в конце ее, в Измайлове (Москва), была построена понижающая подстанция. В Москве, на территории завода Гужона (теперь «Серп и Молот»), линия Измайловской подстанции была соединена с городской сетью несколькими кабелями. Так, в Москве была создана первая, еще несовершенная электрическая система, включающая в себя две электростанции (на Раушской набережной и в Богородске), сети которых были соединены на их периферии.Вторая из двух дореволюционных небольших электроэнергетических систем находилась на юге, где довольно разветвленная кабельная сеть 20 кВ питалась от двух бакинских электростанций, мощность которых к 1914 г. достигла 36,5 и 11 тыс. кВт.

Богородская электростанция (ныне ГРЭС имени Классона), сданная в эксплуатацию в 1914 г., явилась для своего времени самой крупной в мире электростанцией на торфе. Эта станция питала электроэнергией важнейшие предприятия Москвы в тяжелые годы гражданской войны. После окончания войны крупные районные электрические станции стали основным звеном плана электрификации России.

Источник: http://lib.rosenergoservis.ru/ocherki-po-istorii-elektrotehniki.html?start=35

Схемы выдачи мощности и присоединения к сети электростанций | Электрические сети | Электрические сети

Схема выдачи мощности электростанций зависит от конфигурации и схемы электрической сети энергосистемы, в которой сооружается электростанция, и, в свою очередь, существенно влияет на дальнейшее развитие этой сети.

Схемы выдачи мощности крупных электростанций к узловым ПС основной сети в нормальных режимах работы энергосистемы и в нормальной схеме сети должны обеспечивать возможность выдачи всей располагаемой мощности (за вычетом нагрузки распределительной сети и собственных нужд) на всех этапах сооружения электростанции (энергоблок, очередь).

Схема присоединения АЭС на всех этапах ввода мощности должна обеспечивать выдачу всей располагаемой мощности (за вычетом нагрузки распределительной сети и собственных нужд) в любой период суток или года как при полной схеме сети, так и при отключении любой линии или трансформатора связи шин без воздействия автоматики на разгрузку АЭС.

В схемах присоединения к сети крупных ГЭС и КЭС на органическом топливе на всех этапах ввода мощности рекомендуется обеспечивать возможность выдачи всей располагаемой мощности станции (за вычетом нагрузки распределительной сети и собственных нужд) в любой период суток или года как при работе всех отходящих линий, так и отключении одной из линий.

В качестве расчетного года, как правило, принимается год ввода последнего энергоблока.

При этом следует учитывать, что по мере развития энергосистемы и появления новых электростанций район потребления электроэнергии рассматриваемой электростанции сужается; это может привести к изменению потоков мощности по отходящим ВЛ. В связи с этим схема выдачи мощности должна быть проверена на перспективу не менее 5 лет после ввода последнего энергоблока.

Основными принципиальными вопросами являются выбор напряжения, на котором выдается мощность, оптимальное распределение генераторов между РУ разных напряжений, количество отходящих ВЛ на каждом из напряжений, характер и объем потоков обменной мощности.

Требования к главным схемам электрических соединений электростанций регламентированы нормами технологического проектирования АЭС, КЭС и ГЭС.

При напряжениях 330–750 кВ в качестве главных схем электрических соединений электростанций получили широкое использование:

две системы шин с тремя выключателями на две цепи (схема 3/2);

две системы шин с четырьмя выключателями на три цепи (схема 4 / 3);

блочные схемы генератор — трансформатор — линия (ГТЛ) — РУ понижающей ПС соответствующего напряжения.

Некоторое применение получили и другие главные схемы электрических соединений электростанций:

блочные схемы ГТЛ с уравнительно-обходным многоугольником;

схемы многоугольников с числом присоединений, как правило, до четырех, иногда до шести;

схемы связанных многоугольников с двумя связывающими перемычками с выключателями в них.

Современные крупные электростанции сооружаются без РУ генераторного напряжения. На электростанциях рекомендуется применять не более двух РУ повышенных напряжений (220–500 кВ, 330–750 кВ, 500–1150 кВ). Оптимальное распределение генераторов между РУ разных напряжений зависит от их единичной мощности и схемы сети района размещения станции.

Современные АЭС и КЭС сооружаются с генераторами мощностью 500–1000 МВт, а ГЭС — до 640 МВт. Сооружение третьих РУ (как правило, 110 кВ) встречается крайне редко — на действующих электростанциях при нагрузке местного района, соизмеримой с мощностью генераторов. В остальных случаях при необходимости устанавливаются АТ 220 (330) / 110 кВ.

Анализ схем выдачи мощности построенных в последние годы или строящихся электростанций показывает, что примерно одинаковое количество электростанций сооружается с одним или двумя РУ.

При двух РУ одно из них имеет, как правило, напряжение 220 или 330 кВ. Такая схема целесообразна при расположении электростанций в районах с высокой плотностью нагрузок (100–150 кВт/км2 и более) и при размещении опорных ПС сети 220–330 кВ на расстоянии 50—100 км от электростанций. К этому РУ присоединяются один-два энергоблока мощностью 300—1000 МВт.

На 3, 4.4 и 4.5 приведены примеры схем выдачи мощности АЭС, КЭС на органическом топливе и ГЭС.

Большинство АЭС сооружено в западных районах страны, где принята система напряжений 330–750 кВ, и выдают мощность на этих напряжениях (3, а, в); только на одной АЭС выдача мощности осуществляется на напряжениях 220 и 500 кВ (3, б).

КЭС на органическом топливе, построенная на востоке страны, выдает мощность на напряжениях 220–500 кВ при двух РУ (4, а, б), 500 и 1150 кВ — при одном РУ (4, в). Большая часть ГЭС сооружается с системой напряжений 220–500 кВ (5, а, б, в).

При выборе схем присоединения к сети ГАЭС определяющим в большинстве случаев является насосный режим, так как мощность, получаемая в этом режиме от тепловых электростанций системы, как правило, превышает мощность, выдаваемую в сеть в часы максимума нагрузки. Кроме того, продолжительность насосного режима превышает продолжительность режима выдачи мощности. Эти обстоятельства должны учитываться при определении необходимой пропускной способности сетей и расчета потерь электроэнергии на ее транспорт.

Рост значений токов КЗ в энергосистемах привел к применению схем без установки АТ связи между двумя РУ ВН (4, б) или с двумя РУ одного напряжения с их параллельной работой через сети энергосистемы (4, в).

Применение таких схем возможно в редких случаях при соответствии мощности, присоединяемой к шинам каждого РУ, и пропускной способности присоединенной к нему сети в нормальных, послеаварийных и ремонтных режимах.

При размещении электростанций в непосредственной близости от узловых ПС сети ВН применяется присоединение блоков электростанции непосредственно к РУ ПС (4, г).

Количество отходящих ВЛ на каждом напряжении определяется использованием их пропускной способности, которая, в свою очередь, зависит от размещения электростанций относительно центров нагрузки и от конфигурации сети.

Например, большинство АЭС, расположенных в европейской части страны с развитой электрической сетью, становятся коммутационными узлами энергосистемы с большим количеством отходящих ВЛ, суммарная пропускная способность которых превышает мощность присоединенных генераторов (3, а, б).

Этому способствует также необходимость выдачи всей мощности АЭС при выходе из работы любой ВЛ.

На схемы выдачи мощности ТЭЦ влияет то обстоятельство, что они сооружаются на территории или вблизи крупных городов или промышленных узлов. Это предопределяло выдачу мощности ТЭЦ на генераторном напряжении и на напряжении основной распределительной сети, как правило, 110 кВ (6, а).

Однако за последнее время схемы выдачи мощности ТЭЦ претерпели такую же эволюцию, как и схемы КЭС: рост единичной мощности агрегатов и суммарной мощности ТЭЦ, применение дальней теплофикации и отдаление площадок ТЭЦ от потребителей привели к отказу от сооружения РУ генераторного напряжения и к повышению напряжения сети для выдачи мощности.

На современных ТЭЦ блоки присоединяются к РУ 110–220 кВ (6, б).

Стремление упростить схемы выдачи мощности ТЭЦ привело к появлению схем, в которых РУ на ТЭЦ не сооружаются, а повышающие трансформаторы блоков присоединяются отдельными линиями к сети 110 кВ (6, в).

Применение таких схем целесообразно при размещении ТЭЦ вблизи подстанций 220 (330)/110кВ, на шины которых может быть выдана вся мощность ТЭЦ.

При блочном присоединении повышающих трансформаторов ТЭЦ к ПС энергосистемы между трансформаторами и генераторами устанавливаются выключатели.

В последние годы наметилась тенденция к снижению мощности новых электростанций и энергоблоков с широким использованием парогазовых (ПГУ) и газотурбинных установок (ГТУ).

Первые нашли применение при строительстве тепловых электростанций последнего поколения, а вторые — для электроснабжения и резервирования узлов нагрузки и отдельных потребителей.

ГТЭС являются, как правило, многоагрегатными электростанциями с одной секционированной системой сборных шин; при этом выдача мощности осуществляется на генераторном напряжении, а в отдельных случаях и по ВЛ 110 (220) кВ.

Источник: http://energy-ua.com/elektricheskie-s/shemi-vidachi-mo.html

Как выбрать генератор (электростанцию)?

    Электродуговая сварка – это наиболее распространенный вид сварки, когда электрод является одновременно источником дуги и газа, появляющегося при расплавлении флюса.Сварочные электростанции (генераторы) с бензиновым двигателем – наиболее простые в эксплуатации агрегаты. Сварочные бензогенераторы менее требовательны к обслуживанию и нагрузке, обладают малым весом и небольшими габаритами. Они ориентированы, в основном, на бытовое и полупрофессиональное применение.Дизельные сварочные генераторы, в отличие от бензиновых, более экономичные агрегаты, отличающиеся, к тому же, большим моторесурсом. При этом они требовательны к нагрузке, имеют большие габариты и вес. Цена сварочных дизельгенераторов значительно выше бензиновых аналогов, поэтому они используются в основном в промышленном производстве и строительстве.Сварочные агрегаты подразделяются на: трансформаторы и выпрямители. Вольтамперная характеристика трансформаторов и выпрямителей является падающей: чем больше сила тока на выходе, тем меньше выходное напряжение.Сварочные трансформаторы применяются для сварки низколегированных сталей и обеспечивают сварку плавящимися электродами с флюсом на переменном токе.При сварке выпрямителями также используются плавящиеся электроды с флюсом, но на постоянном токе. Сварочные выпрямители обеспечивают более высокое качество сварного шва благодаря более стабильному горению дуги и применяются для сварки низколегированных и нержавеющих сталей.Перед покупкой сварочного генератора (электростанции) в первую очередь необходимо сформировать эксплуатационные требования. Следует обращать внимание на технические характеристики как двигателя, так и сварочного модуля, при этом стоит учитывать предполагаемые условия эксплуатации, интенсивность и тип сварочных работ.Мощность сварочного агрегата подбирается исходя из толщины металла, с которым предполагается работать. Правильный выбор сварочного генератора позволит получить Вам устойчивую дугу и глубокую проварку швов.Инверторные генераторы (электростанции) – особый вид бензиновых и дизельных электрогенераторов, вырабатывающий наиболее качественный ток. Инверторные генераторы (генераторы инверторного типа, электростанции) обычно используются для бесперебойной работы сложного и/или дорогого электрооборудования (аудио- и видеосистем, электронно-вычислительной техники и др.), потому что использование инверторной технологии позволяет получить идеальный ток для подключения чувствительных потребителей.Суть инверторной технологии заключается в преобразовании инвертором (модулятором) вырабатываемого переменного тока в постоянный, после чего генератор инверторного типа (инверторная электростанция) максимально стабилизирует волновые колебания и вновь преобразует постоянный ток в выходной переменный, но уже лучшего качества – искажения синусоидальной волны составляют менее 2,5%.Следует отметить, что высококачественный ток – далеко не единственное преимущество инверторных генераторов (генераторов инверторного типа, инверторных электростанций).Во-первых, инверторные генераторы (по сравнению с обычными моделями) до 2-х раз меньше по своей массе и габаритам, поэтому многие называют их «портативными».Во-вторых, генераторы инверторного типа, подстраиваясь под фактическую нагрузку, обладают высокой экономичностью. Дело в том, что инверторные генераторы (в зависимости от нагрузки) имеют автоматическую регулировку оборотов двигателя. Если нагрузка небольшая, то электростанция самостоятельно переключит двигатель на экономичный режим работы. Работа инверторного генератора лежит в нескольких режимах мощности, что позволяет в зависимости от нагрузки обеспечивать необходимое количество кВт в электросети.В-третьих, генераторы (электростанции) инверторного типа характеризуются низким уровнем шума, что достигается благодаря помещению электростанций в пластиковый шумоизоляционный кожух или доукомплектованию специальными глушителями.В-четвертых, инверторные генераторы более экологичны по сравнению с дизельными или бензиновыми аналогами. Дело в том, что инверторные электростанции оснащены современной высокоэффективной системой улучшенного сгорания топлива, которая существенно сокращает уровень вредных выбросов в атмосферу.В-пятых, необходимо отметить высокую надежность генераторов инверторного типа. В их конструкции предусмотрены наиболее передовые способы защиты основных узлов и деталей (система автоматической регулировки оборотов двигателя, защита от перегрузки, датчик низкого давления масла), что позволяет существенно продлить срок их службы.Инверторные генераторы (электростанции) производятся в мощностном диапазоне от 1 до 7 кВт.Альтернатор – электрическая часть генератора (электростанции) – бывает 2-х типов: асинхронный и синхронный альтернатор.Генераторы (электростанции) с асинхронными альтернаторами стоят дешевле, однако говорить о приемлемом качестве тока в этом случае нельзя. Кроме того, асинхронные генераторы (электростанции) плохо переносят пиковые нагрузки. Дело в том, что в момент запуска электродвигатели потребителей (холодильник, насос, электроинструмент) потребляют кратковременно трех-четырехкратную мощность, поэтому запас по мощности для генераторной установки крайне важен.Синхронные генераторы (электростанции) отличаются более высоким качеством электроэнергии, а также способны переносить трех-четрырехкратные мгновенные перегрузки. В профессиональных и стационарных электростанциях устанавливаются исключительно синхронные и бесщеточные необслуживаемые альтернаторы признанных лидеров (французский Leroy Somer, итальянский Mecc Alte и Sincro).Важной составляющей любой генераторной установки является электрическая часть – альтернатор. Принцип действия альтернатора известен с момента открытия Майклом Фарадеем явления электромагнитной индукции и возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.Для потребителя же важен не сам процесс, благодаря которому лампочка на кухне не только горит, но и не мигает. Существует ряд факторов, благодаря которым выходное напряжение может отличаться от заданного значения в большую или меньшую сторону. Такие отклонения вовсе не полезны для потребителей электроэнергии. Именно поэтому альтернаторы снабжают различными устройствами, призванными нивелировать скачки напряжения.Конденсаторы, трансформаторы, инверторы и AVR (автоматические регуляторы напряжения) регулируют выходное напряжение генераторов, поддерживая его в заданных параметрах, тем самым улучшая качество производимой электроэнергии.Бензиновый бытовой генератор (электростанция), малой и средней мощности, который служит незаменимым помощником для работы и отдыха, помимо своей надежности и выполнения прямого предназначения, должен обладать удобством пользования, его приборы должны быть информативны, габариты невелики, а вес мал. При этом запускаться он может как автомобиль – «с ключа».Как правило, генераторные установки большой мощности в силу объемного двигателя имеют электрический запуск, бытовые же генераторы (электростанции) чаще запускаются при помощи ручного стартера. И дело вовсе не в том, что производители генераторных установок решили позаботиться о физической форме владельцев выпускаемой ими техники, нет, попросту электрический стартер – это электромотор, который прилично весит, для использования которого нужна аккумуляторная батарея, промежуточные механизмы, которые тоже имеют свою массу. Да и цена конечного продукта не становится от такого удобства меньше. И все же, в линейке серьезных производителей бок о бок соседствуют модели одинаковой мощности, как с ручным, так и с электрозапуском. Необходимость такого модельного разнообразия требуется для подключения системы автоматического запуска, и без электростартера здесь не обойтись. Так что выбор за покупателем!Автоматические системы запуска для генератора, как следует из определения, призваны обеспечить запуск генераторных установок при отключении электроэнергии. Система представляет собой большую электрическую схему, которая при отсутствии напряжения в одном контуре замыкает контакты электростартера генераторной установки. Работа системы должна быть четко сбалансирована с работой электрогенератора.Система, ее пуск и наладка, порой сравнимы со стоимостью и так недешевой генераторной установки. Наибольшее распространение такой тандем получил на промышленных объектах, где требуется постоянная работа электроприборов, холодильного оборудования, контрольно-измерительного оборудования и т.д. Подобные объекты имеют резервное питаниеБ/ызфтЮ от дизельных или газовых генераторов (электростанций). В случае последних, установки по возможности подключают от магистральной газовой сети, а если это дизельные станции, то используют внешние топливные баки – резервуары, расположенные под землей.Если установка запитывает объект, находящийся в населенном пункте, или предприятие, с рабочим персоналом, то обязательно используют шумоизоляционный кожух, который существенно снижает шум работающего двигателя. Звук выхлопа снижают за счет использования эффективных глушителей.Конечно, стационарная установка резервного источника питания должна иметь четкое конкретное обоснование, в силу своей дороговизны. Да не все и строительные площадки возможно оснастить электроустановкой, питающей множество потребителей. Как следствие, в некоторых случаях большую роль играет мобильность генератора. Для бытовых нужд генераторы оснащаются рукоятками и набором транспортных колес, благодаря которым установку, массой более ста килограмм, может транспортировать один человек. В рамках промышленного использования, установки помещают внутрь специального контейнера, который перевозят на грузовом транспорте.ИБП (Источника Бесперебойного Питания) – источник вторичного электропитания, автоматическое устройство, назначение которого – обеспечить подключенное к нему электрооборудование бесперебойным снабжением электрической энергией в пределах нормы.Существуют следующие нормы в РФ (определенные в ГОСТ 13109-97), которые характеризуют электропитающие сети: напряжение 220В ± 10 %; частота 50 Гц ± 1 Гц; коэффициент нелинейных искажений формы напряжения менее 8 % (длительно) и менее 12 % (кратковременно).К сожалению, такими параметрами обладает далеко не каждая электросеть и не только в РФ, поэтому ИБП получили широкое распространение как надежный источник кратковременного электроснабжения. Довольно часто ИБП используются в промежутке, когда центрального электроснабжения уже нет, а резервного еще нет.При выборе генератора (электростанции), прежде всего, необходимо:

    1. Определить, какой режим эксплуатации генераторной установки предполагается или, другими словами, для каких целей предполагается его использование. На практике электростанция необходима, если:
      • Вы проводите много времени за городом (в коттедже или на даче), где перебои в электроснабжении не редкость;
      • оборудование Вашего коттеджа или дачи, промышленного помещения или офиса требует бесперебойного питания;
      • электроника в Вашем коттедже или на даче может запитываться только качественным током;
      • Вам надо воспользоваться электрооборудованием, при этом источник электроэнергии отсутствует поблизости;
      • Вы любите активный отдых на природе, бываете в экспедициях (пешком или на транспортном средстве), где нужна электроэнергия, чтобы приготовить еду, запитать мини-холодильник, зарядить мобильный телефон, осветить палатку и др.
    2. Рассчитать потребность в мощности генератора (электростанции), предварительно просуммировав количество потребителей и их мощность, не забыв сделать запас в 30-40% для пиковых нагрузок.
    3. Проконсультироваться со специалистами или самостоятельно определить необходимый уровень качества электроэнергии, требующийся для запитки потребителей, т.е. понять потребность в инверторном или не инверторном генераторе, в однофазном или трехфазном генераторе. Это условие, с одной стороны, поможет уберечь от преждевременного выхода из строя высокоточной аппаратуры, а с другой стороны, при отсутствии такой аппаратуры поможет сэкономить при выборе более простой модели генератора.
    4. Определиться с условиями эксплуатации генератора (электростанции). При стационарной установке генератора (электростанции) следует учитывать уровень шума, климатические условия, возможность периодического обслуживания, возможные акты вандализма. Данные условия определят комплектацию и оснастку генераторной установки, наличие всепогодного шумоизоляционного кожуха или его отсутствие.
Читайте также:  Эксплуатация шинопроводов и троллеев

Руководствуясь вышеперечисленными принципами, можно сделать осмысленную и правильную покупку, рационально потратив средства и время.

Мы очень надеемся, что наши советы помогут определиться с продукцией, подходящей именно под Ваши задачи и полностью удовлетворяющей Ваши потребности, и, как следствие, купить бензиновый (бензогенератор), дизельный (дизельгенератор) или газовый (газогененератор) генератор.

Источник: https://www.power-garden.ru/poleznye_materialy/generatory_avtomatika_stabilizatory/kak_vybrat_generator_elektrostantsiyu/

Принцип работы теплоэлектростанций и гидроэлектростанций в России

В первые годы советской власти под руководством Ленина был разработан план строительства электростанций и электрофикации России — план ГОЭЛРО. Владимир Ильич назвал этот план второй программой партии. При обсуждении его Ленин говорил: «Коммунизм — это есть советская власть плюс электрофикация всей страны».

Современное производство невозможно представить без электрических двигателей, приводящих в действие различные станки, устройства, автоматические линии. Без электричества не будет работать ни одна автоматизированная система управления технологическим процессом.

Широко применяется электричество в сельском хозяйстве, на железнодорожном и городском транспорте. Сегодня электричество постоянный спутник человека. Фабриками электрической энергии являются электростанции. Первенец ГОЭЛРО Волховская ГЭС имела мощность всего 66 000 кВт.

А сооруженная в послевоенные годы Волжская гидроэлектростанция имени 22 съезда КПСС имела мощность 2 млн 500 тысяч кВт. Основные типы электростанций: гидравлические и тепловые.

Тепловые электростанции

На тепловой электростанции электроэнергия получается из энергии заключенной в топливе. Основные части тепловой электростанции следующие: топливный склад и устройства для различения угля, паровой котел и турбина с генератором.

Уголь поступает на топливный склад. Специальный механизм — вагоноопракидыватель загружает уголь в бункер. Ленточные транспортеры подают его в шаровую мельницу, где уголь размалывается в пыль. По трубам угольная пыль идет в отдельное отделение, где находятся паровые котлы. Современный паровой котел — это большое сооружение высотой с многоэтажный дом.

Вместе с горячим воздухом угольная пыль вдувается в топку котла. В качестве топлива можно применять нефть или газ. В топке котла пыль сгорает в виде факела, при этом выделяется большое количество тепла. Вода в трубах нагревается и превращается в пар. Пар собирается в верхнем барабане котла.

Затем он проходит через змеевик, пароперегреватель, где нагревается до температуры 400 — 500 градусов. Из котла перегретый пар по трубопроводу поступает в паровую турбину, установленную в машинном зале электростанции. Паровая турбина — это тепловой двигатель, преобразующий энергию пара в механическую энергию вращения вала. Пар из котла поступает в турбину под большим давлением.

В турбине имеется система неподвижных лопаток между которыми расположены лопатки рабочих колес укрепленных на валу. Рассмотрим работу одного из колес. В каналах между рабочими лопатками изменяется направление движение пара, при этом пар действует на лопатки и вращает вал турбины с большой скоростью 3000 оборотов в минуту. Из турбины отработавший пар поступает в конденсатор.

В трубках конденсатора циркулирует холодная вода, вода получившаяся из пара питательным насосом снова подается в котел. Механическая энергия турбины преобразуется в электрическую в генераторе, вал которого соединен с валом турбины. Рассмотрим генератор в разрезе. Он состоит из статора и ротора. Постоянный ток от постороннего источника через щетки и кольца проходит по обмотке ротора.

При вращении ротора его магнитное поле перетекает в обмотку статора. В обмотках статора индуктируется переменный электрический ток большой мощности. Этот ток поступает на повышающую подстанцию. В соответствии с законом сохранения и превращения энергии, электростанция не создает энергию.

Она лишь преобразует заключенную в топливе химическую энергию в энергия пара, которая в свою очередь превращается в механическую энергию и затем уже в электрическую энергию. Коэффициент полезного действия тепловой электростанции составляет примерно 25%. На крупных советских электростанциях работают турбины мощностью 150 — 200 тысяч киловатт. Созданы турбины мощностью 300 тысяч киловатт.

Мощные генераторы дают ток десятки тысяч ампер при напряжении порядка 10 000 Вольт. Тепловые электростанции обычно сооружаются там, где имеются запасы топлива. Каменный уголь, газ, торф. Электроэнергия передается по проводам потребителям на сотни километров. Поскольку мощность тока равна произведению силы тока на напряжение, то при малом напряжении сила тока будет очень значительной.

Провода сильно нагреются, что приведет к большим потерям электроэнергии. Чтобы сократить потери электроэнергии, можно было бы уменьшить сопротивление проводов, увеличив их сечение. Но тогда пришлось бы израсходовать большое количество металла. Как же этого избежать? Нужно снизить силу тока, увеличив во столько же раз напряжение. Потребуется только обеспечить лучшую изоляцию проводов.

Для преобразования тока и напряжения применяются трансформаторы. Они повышают напряжение и соответственно уменьшают силу тока. Мощность же тока остается неизменной. Для дальних электропередач применяется напряжение до 500кВ. Ток высокого напряжения по воздушным линиям передается к месту потребления.

Здесь ток поступает на главную понижающую подстанцию, где его напряжение с помощью трансформаторов уменьшается до 6 600 Вольт. От понижающей подстанции по воздушным линиям и подземным кабелям ток поступает на другие подстанции, находящиеся на предприятиях и улицах городов. Тут напряжение еще раз снижается от 6 600 Вольт, до величины применяемой в быту и на производстве.

Теплоэлектроцентрали (ТЭЦ)

Для отопления жилых домов и производственных помещений требуется много тепла. Оно может быть получено от теплоэлектроцентралей (ТЭЦ). Это электростанции, которые наряду с электроэнергией отдают значительную часть тепла, расположенным по близости потребителям.

Подогрев воды отпускаемой ТЭЦ для отопления и бытовых нужд населения производятся в специальных пароводяных водонагревателях. Рассмотрим схему ТЭЦ. Отработавший пар из турбины поступает в теплообменник. Здесь он конденсируется и конденсат возвращается в котел.

Вода, циркулирующая в трубках теплообменника нагревается и насосом подается в теплосеть.

Гидроэлектростанции

Большое внимание уделяется в нашей стране сооружению — гидроэлектростанции. Наличие крупных рек создает благоприятные условия для сооружения мощных гидроэлектростанций. Гидроэнергетические ресурсы нашей страны составляют 420 млн кВт. Электростанция является основной частью гидроузла.

В состав гидроузла входит водосливная железобетонная платина для пропуска воды в паводки, земляная платина, судоходный шлюз, волнолом, оросительные и другие сооружения. Платина сооружаемая поперек реки делит ее на верхнюю часть — верхний бьеф, где накапливается вода, и нижнюю часть нижний бьеф.

Разность уровня реки между верхним и нижним бьефами, образует напор создаваемый платиной и используемый турбинами. Задержанная платиной вода проходит по каналу в спиральную камеру, охватывающую рабочее колесо гидротурбины. Из спиральной камеры вода с большой скоростью поступает на лопасти рабочего колеса гидротурбины и вращает его.

С валом турбины соединен вал ротора генератора. Гидротурбина и генератор образуют гидроагрегат. При работе гидроагрегата механическая энергия превращается в электрическую. Завершив работу в гидротурбине, вода вытекает через канал в нижний бьеф.

Для гидроэлектростанций характерен высокий коэффициент полезного действия, они используют более 90% энергии потока воды. Гидроэлектростанции не потребляют топлива. Их обслуживает малочисленный персонал. Все это снижает себестоимость электроэнергии.

Как и тепловая, гидравлическая электростанция не создает энергию, она лишь преобразует механическую энергию в электрическую. Из генераторов электрический ток подается на трансформаторы повышающей подстанции, а оттуда по высоковольтным линиям электропередачи дальним потребителям.

У плотины гидроэлектростанции создается водохранилище, где накапливается большое количество воды, обеспечивающее работу ГЭС в течение всего года. Гидроэлектростанция использует энергию лишь определенного участка реки. Для более полного использования энергии реки строят каскад электростанций. Так называется несколько электростанций расположенных одна за другой.

Высоковольтные линии электропередачи связывают между собой тепловые и гидроэлектрические электростанции, объединяя их в энергосистему. Гидроэлектростанции вполне используют паводки и отдают в эти периоды наибольшее количество электроэнергии, а тепловые электростанции могут производить в этот период ремонт котлов и турбин.

Читайте также:  Измерение электрической энергии

В случае аварийного отключения одной из станций, другие станции энергосистемы принимают на себя ее электрическую нагрузку. Управление агрегатами системами происходит централизованно из диспетчерского пункта.

После пуска двух сверхмощных гидроэлектростанций на Волге, была создана единая энергосистема европейской части советского союза. 

Источник: http://ruaut.ru/content/tehnicheskaya_biblioteka/videoteka/printsip-raboty-teploelektrostantsiy-i-gidroelektrostantsiy-v-rossii.html

Электростанция. Что такое электростанция. Оборудование электростанций. Энергетика. Энергосистема

Картинка в полном размере

Электростанция — что это такое?

Электрическая станция — совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.

Существует множество типов электростанций. Отличия заключаются в технических особенностях и исполнении, а также в виде используемого источника энергии. Но несмотря на все различия большинство электростанций используют для своей работы энергию вращения вала генератора.

Станции разных типов объединены в Единую энергетическую систему, позволяющую рационально использовать их мощности, снабжать всех потребителей.

Основное оборудование электростанций

К основному оборудованию электростанций можно отнести:

  • генераторы;
  • турбины;
  • котлы;
  • трансформаторы;
  • распределительные устройства;
  • двигатели;
  • выключатели;
  • разъединители;
  • линии электропередач;
  • средства автоматики и релейной защиты

Энергосистемы

Энергосистемы — совокупность энергетических ресурсов всех видов, методов и средств их получения, преобразования, распределения и использования, обеспечивающих снабжение потребителей всеми видами энергии.

Что входит в энергосистему

В энергосистемы входят:

  • электроэнергетическая система;
  • система нефте- и газоснабжения;
  • система угольной промышленности;
  • ядерная энергетика;
  • нетрадиционная энергетика.

Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов

Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой.

В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи.

Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции.

Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях связывают между собой ТЭЦ и котельные.

Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико-экономические преимущества:

  • существенное снижение стоимости электро- и теплоэнергии;
  • значительное повышение надёжности электро- и теплоснабжения потребителей;
  • повышение экономичности работы различных типов электростанций;
  • снижение необходимой резервной мощности электростанций.

Энергетика

Энергетика — область общественного производства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Энергетика каждого государства функционирует в рамках созданных соответствующих энергосистем.

Её целью является обеспечение производства энергии путём преобразования первичной, природной, энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:

  • получение и концентрация энергетических ресурсов, примером может послужить добыча, переработка и обогащение ядерного топлива;
  • передача ресурсов к энергетическим установкам, например доставка мазута на тепловую электростанцию;
  • преобразование с помощью электростанций первичной энергии во вторичную, например химической энергии угля в электрическую и тепловую энергию;
  • передача вторичной энергии потребителям, например по линиям электропередачи.

Энергетика как наука, в соответствии с номенклатурой специальностей научных работников, утверждённой Министерством образования и науки Российской Федерации, включает следующие научные специальности:

  • Энергетические системы и комплексы;
  • Электрические станции и электроэнергетические системы;
  • Ядерные энергетические установки;
  • Промышленная теплоэнергетика;
  • Энергоустановки на основе возобновляемых видов энергии;
  • Техника высоких напряжений;
  • Тепловые электрические станции, их энергетические системы и агрегаты.

Электроэнергетика

Электроэнергетика — это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи.

Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей.

Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов.

Электроэнергетику принято делить натрадиционную и нетрадиционную.

Традиционная электроэнергетика

Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единична электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений.

Тепловая энергетика (теплоэнергетика)

В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива.

Тепловые электростанции делятся на:

  • Паротурбинные электростанции, на которых энергия преобразуется с помощью паротурбинной установки;
  • Газотурбинные электростанции, на которых энергия преобразуется с помощью газотурбинной установки;
  • Парогазовые электростанции, на которых энергия преобразуется с помощью парогазовой установки.

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе нефти вырабатывается 39% всей электроэнергии мира, на базе угля — 27%, газа — 24%, то есть всего 90% от общей выработки всех электростанций мира. Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов — газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.

Гидроэнергетика

В этой отрасли электроэнергия производится на гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.

ГЭС преобладает в ряде стран — в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.

Ядерная энергетика

Отрасль, в которой электроэнергия производится на атомных электростанциях (АЭС), использующих для этого энергию управляемой цепной ядерной реакции, чаще всего урана и плутония.

По доле АЭС в выработке электроэнергии первенствует Франция, около 80 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония.

Нетрадиционная электроэнергетика (Альтернативная энергетика)

Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км²) и малая единичная мощность.

Направления нетрадиционной энергетики:

  • Малые гидроэлектростанции
  • Ветровая энергетика
  • Геотермальная энергетика
  • Солнечная энергетика
  • Биоэнергетика
  • Установки на топливных элементах
  • Водородная энергетика
  • Термоядерная энергетика.

Также можно выделить важное из-за своей массовости понятие — малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт.

К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например в России — примерно 96 %), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе.

Электрические сети

Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии.

Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.

Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям.

Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях.

Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными.

Теплоснабжение

Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей.

Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами.

Такие условия могут быть реализованы в большинстве стран мира только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80-90°C.

Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1—3 МПа.

В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:

  • источника тепла, например котельной;
  • тепловой сети, например из трубопроводов горячей воды или пара;
  • теплоприёмника, например батареи водяного отопления.

Централизованное теплоснабжение

Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.).

Для централизованного теплоснабжения используются два вида источников:

  • Теплоэлектроцентрали (ТЭЦ), которые также могут вырабатывать и электроэнергию;
  • Котельные, которые делятся на:

Децентрализованное теплоснабжение

Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует.

Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт).

Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев.

Виды децентрализованного отопления:

  • Малыми котельными;
  • Электрическое, которое делится на:
  • Теплонасосное;
  • Печное.

Тепловые сети

Тепловая сеть — это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.

От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды.

Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения.

Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей.

Энергетическое топливо

Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.

Органическое топливо

В зависимости от агрегатного состояния органическое топливо делится на газообразное, жидкое и твёрдое, каждое из них в свою очередь делится на естественное и искусственное.

Доля такового топлива в мировом энергобалансе составляла в 2000 году около 65%, из которых 39% приходились на уголь, 16% на природный газ, 9% на жидкое топливо(2000г).

В 2010 году по данным BP доля ископаемого органического топлива 87%, в том числе: нефть 33,6%, уголь 29,6% газ 23,8%. Tо же по данным «Renewable21» 80,6%, не считая традиционной биомассы 8,5%.

Газообразное

Естественным топливом является природный газ, искусственным:

  • Генераторный газ;
  • Коксовый газ;
  • Доменный газ;
  • Продукты перегонки нефти;
  • Газ подземной газификации;
  • Синтез-газ.

Жидкое

Естественным топливом является нефть, искусственным называют продукты его перегонки:

  • Бензин;
  • Керосин;
  • Соляровое масло;
  • Мазут.

Твёрдое

Естественным топливом являются:

Ископаемое топливо:

  • Торф;
  • Бурый уголь;
  • Каменный уголь;
  • Антрацит;
  • Горючий сланец;

Растительное топливо:

  • Дрова;
  • Древесные отходы;
  • Топливные брикеты;
  • Топливные гранулы.

Искусственным твёрдым топливом являются:

  • Древесный уголь;
  • Кокс и полукокс;
  • Углебрикеты;
  • Отходы углеобогащения.

Ядерное топливо

В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС.

Ядерное топливо получают из природного урана, который добывают:

  • В шахтах (Франция, Нигер, ЮАР);
  • В открытых карьерах (Австралия, Намибия);
  • Способом подземного выщелачивания (США, Канада, Россия).

Для использования на АЭС требуется обогащение урана, поэтому его после добычи отправляют на обогатительный завод, после переработки на котором 90% побочного обеднённого урана направляется на хранение, а 10% обогащается до нескольких процентов (3—5% для энергетических реакторов).

Обогащённый диоксид урана направляется на специальный завод, где из него изготавливают цилиндрические таблетки, которые помещают в герметичные циркониевые трубки длиной почти 4 м, ТВЭЛы (тепловыделяющие элементы).

По нескольку сотен ТВЭЛов для удобства использования объединяют в ТВС, тепловыделяющие сборки.

Источник: http://k-oo.top/s/oborudovanie-elektrostantsii.html

Ссылка на основную публикацию