Измерение электрической энергии

В чем измеряется электроэнергия?

Единицы измерения электрической энергии обозначены и закреплены в Международной системе единиц.

Использование бытовых электроприборов в домашних условиях заставляет пользователей считать электроэнергию и знать единицы, в которых она измеряется.

Электроэнергия единицы измерения

Напряжение

Напряжение (U) в сети измеряется в вольтах (В).

В однофазной сети, которая обычно используется для электроснабжения частных потребителей напряжение – 220В.

В трехфазной сети – напряжение – 380В. 1 киловольт (кВ) равен 1000В.

Напряжение 220 и 380В, приравнивается к обозначению напряжения как 0,22 и 0,4 кВ.

Сила тока

Потребляемая нагрузка, которую выдают бытовые приборы, оборудование и прочие потребители называется силой тока (I) и измеряется в амперах (А).

Сопротивление

Сопротивление (R) не менее важный показатель и демонстрирует величину противодействия материалов прохождению электротока. В быту, замер сопротивления свидетельствует о целостности электрических приборов, измеряется в (Ом). Для замера большого значения сопротивления, например, при замере целостности электродвигателя, пользуются мегомметром, 1 Ом равен 0,000001 мегаОм (мОм).

1 килоОм (кОм) равен 1000 Ом.

Сопротивление человеческого тела составляет от 2 до 10 кОм.

Удельное сопротивление проводника служит для оценки сопротивляемости материалов, для их последующего использования при изготовлении электротехнических изделий, зависит от площади поперечного сечения и длины проводника.

Мощность

Мощность – это количество электрической энергии, потребляемое тем или иным бытовым прибором за определенную единицу времени измеряется в ваттах (Вт) и килоВт (кВт) – 1000 Вт, в промышленных масштабах используют такие единицы измерения, как мегаватт – 1 млн. Вт и гигаватт (гВт) – 1 млрд ватт.

В чем измеряется электроэнергия по счетчику

Для определения количества потребленной электроэнергии, используются электрические счетчики активной энергии, они служат для ее учета. В промышленности существуют также счетчики реактивной энергии.

Чтобы определить, в чем измеряется потребление электроэнергии в квартире, используют 1 кВт*час. Для счетчиков реактивной энергии, интегрированная реактивная мощность измеряется как 1 кВар*час. Необходимо заметить, что при записи потребляемой энергии, по счетчику правильно надо писать, мощность умножить на время.

Источник: http://enargys.ru/v-chem-izmeryaetsya-elektroenergiya/

Измерение электрической мощности и энергии

Сохрани ссылку в одной из сетей:

Министерство образования и науки РФ

Пензенский государственный университет

Кафедра «Метрология и системы качества»

Реферат на тему

«Измерение электрической мощности и энергии»

Выполнила: ст. гр. 07ПЦ1

Разакова Э. Х.

Проверила: к. т. н., доц.

Сафронова К. В.

Пенза, 2009

Содержание

Введение ………………………………………………………………………..3

1 Измерение мощности в цепях повышенной и высокой частот……………6

2 Измерение импульсной мощности………………………………………….11

А) метод измерения средней мощности с учетом коэффициента

заполнения……………………………………………………………………..11

Б) метод сравнения с мощностью постоянного тока……………………..12

В) интегрально – дифференциальный метод………………………………13

Г) метод дискретизации с запоминанием отсчетов……………………….14

3 Цифровые измерители мощности…………………………………………..15

4 Счетчики электрической энергии переменного тока на

основе индукционных измерительных механизмов…………………………16

5 Цифровые счетчики электрической энергии……………………………….18

Список используемой литературы…………………………………………….20

Введение

Измерение мощности осуществляется в цепях постоянного и переменного токов низкой, высокой частоты, а также в импульсных цепях различной измерительной, электротехнической, радиоприемной и передающей аппаратуры. Диапазон измеряемых мощностей лежит в пределах 10-16 – 109 Вт.

Методы измерения существенно отличаются друг от друга в зависимости от параметров цепи, в которой производится измерение мощности , предела изменения мощности и частотного диапазона.

В цепях постоянного тока мощность потребления нагрузки определяется произведением тока в нагрузке и падения напряжения на ней:

Р = UI = I2 R.

В цепях переменного тока мгновенное значение мощности потребления: p(t) = u(t)i(t).

Если u(t) и i(t) – периодические функции времени с периодом Т, то среднее значение мощности потребления за период называют мощностью, или активной мощностью Р. Мощность Р с мгновенным значением мощности p(t) связана выражением

Р = 1/Т ∫ p(t)dt = 1/T∫ uidt.

Мощность измеряется в абсолютных единицах – ваттах, производных ватта и относительных единицах – децибелваттах ±α = 10lg (P/Po), где Р – абсолютное значение мощности в ваттах (или милливаттах), Po – нулевой (отсчетный) уровень мощности, равный 1мВт (или 1мВт), связанный с абсолютными нулевыми напряжения Uo и тока Io через стандартное сопротивление Rо соотношением Po = U2o /Rо = I2o Ro. Для измерения мощности используют прямые и косвенные методы измерения. Прямые измерения осуществляются с помощью электродинамических, ферродинамических и электронных ваттметров, косвенные – сводятся к определению мощности посредством амперметра и вольтметра или осциллографа.

Реактивная мощность должна быть сведена к минимуму; поставщики электроэнергии наказывают потребителей за включение в сеть нагрузок с плохим коэффициентом мощности. На рисунке 1 представлена схема, работающая на переменном токе. Видно, что реактивную мощность можно исключить, если принять меры по обеспечению равенства VC = VL, то есть выполнить коррекцию коэффициента мощности.

На низких частотах мощность обычно рассчитывается по измеренным значениям тока и напряжения. На высоких частотах, превышающих 1 МГц, более удобны и точны измерения мощности, а напряжение и ток можно рассчитать. На частотах выше 1 ГГц понятия напряжения и тока теряют смысл, и мощность остается практически единственным измеримым параметром.

В цепи переменного тока мощность непрерывно меняется вместе с изменениями напряжения и тока. Приборы измеряют среднюю или постоянную мощность, что при работе на радиочастотах означает усреднение по большому числу циклов.

Период, по которому производится усреднение, зависит от типа сигнала. Для непрерывного сигнала мощность усредняется по большому числу периодов высокой частоты.

В случае амплитудно – модулированного сигнала усреднение мощности проводится по нескольким циклам, а для импульсного сигнала – по большому числу импульсов.

Рисунок 1 Напряжение и ток в цепи переменного тока: а-схема цепи, б-векторная диаграмма

Относительные результаты измерения мощности часто выражаются в децибелах (дБ). Децибел составляет одну десятую ьела. Например, если Р2 – мощность на входе усилителя, а Р1 – мощность на выходе, то коэффициент усиления равен

G (дБ) = 10lg Р1/Р2.

Децибел удобен для измерения мощности, поскольку обеспечивает более компактную форму записи; чтобы найти усиление многокаскадной схемы, достаточно сложить коэффициенты усиления отдельных каскадов вместо их перемножения.

На сетевых и низких частотах наиболее широко применяется электродинамический измерительный механизм. Он пригоден для измерения относительно высоких уровней мощности.

Приборы, предназначенные для измерения мощности на высоких и сверхвысоких частотах, бывают двух типов: поглощающие измерители мощности, содержащие собственную нагрузку, и измерительные линии, в которых нагрузка располагается на некотором расстоянии. Поглощающие приборы более точны и обычно включают в себя 50-омную нагрузку для работы на высоких частотах.

Измерение мощности в цепях повышенной и высокой частот.

Читайте также:  Испытание кабельных линий повышенным напряжением

В цепях повышенной и высокой частот проводят прямые и косвенные измерения мощности. В ряде случаев косвенные измерения предпочтительнее, так как проще измерять напряжение, ток и сопротивление, чем мощность. Прямые измерения в основном осуществляют с помощью электронных ваттметров.

В некоторых электронных ваттметрах используют электродинамические измерительные механизмы с предварительным усилением тока и напряжения либо с предварительным выпрямлением этих величин.

В качестве измерительного механизма в них можно использовать электростатический электромер с усилителями напряжения и тока, а также магнитоэлектрические механизмы с квадраторами.

Квадраторы выполняют на полупроводниковых диодах, преобразователях и других нелинейных элементах, работа которых осуществляется на квадратичном участке вольт-амперной характеристики. Операция перемножения ui в квадраторах заменяется операциями суммирования и возведения в квадрат. В диапазоне частот до сотен мегагерц применяют ваттметры с датчиками Холла.

На сверхвысоких частотах мощность измеряют преобразованием мощности в теплоту (калориметрические методы), свет (фотометрические методы) и др.

Калориметр. Калориметры используются для измерения высокой мощности преимущественно в метрологических лабораториях. Калориметр состоит из нагрузочного сопротивления в теплоизолирующем корпусе, погруженного в жидкость или воздушную среду.

Жидкость может быть неподвижной или втекать в калориметр и вытекать из него с известной скоростью. Температуры жидкости на выходе и входе измеряются.

Если r – скорость потока хладагента в [см3 / с], d – его плотность в [г / см3], s – удельная теплоемкость хладагента, Тi – его температура на входе и То – на выходе, то мощность Рi , рассеиваемая в калориметре, определяется выражением

Рi = (То – Тi )rds/0, 2389 Вт

В калориметрических измерениях применим метод замещения. Например, после выполнения высокочастотных измерений на калориметр подается мощность постоянного тока, дающая ту же разность температур

(То – Тi ) при тех же условиях охлаждения. Затем мощность постоянного тока измеряется и считается равной мощности высокочастотного сигнала.

Измерение мощности электронным выпрямительным ваттметром. Принципиальная схемаэлектронного ваттметра с квадратором, выполненным на полупроводниковых диодах, показана на рисунке2.

Ваттметр имеет два резистора в цепи тока, сопротивления которых R1 = R2 много меньше сопротивления нагрузки, и два резистора сопротивлениями R3, R4 в цепи напряжения.

Резисторы R3 и R4 выполняют роль делителя напряжения, поэтому сопротивление R3 + R4 много больше сопротивления нагрузки ZH.

Падение напряжения на резисторах R1 = R2 пропорционально току нагрузки k1i, падение напряжения на резисторе R3 делителя пропорционально напряжению на нагрузке, т. е. k2u. Как видно из схемы, напряжения u1 и u2 на диодах VD1 и VD2 будут соответственно:

u1 = k2u + k1i; u2 = k2u — k1i.

При идентичных характеристиках диода и работе на квадратичном участке вольт-амперной характеристики токи i1 и i2 пропорциональны квадратам напряжений.

Рисунок 2 Принципиальная схема электронного выпрямительного ваттметра

Ток в цепи прибора iи = (i1 – i2)R/Rи . Постоянная составляющая тока, измеряемая магнитоэлектрическим прибором, при u = Umaxsinωt и i = Imax sin(ωt±φ) пропорциональна активной мощности:

IИ = 1/Т∫kuidt = k 1/T uidt = kUIcosφ = kPx,

где Px — измеряемая мощность.

Электронные ваттметры, в схему которых включены диоды, обладают невысокой точностью, погрешностью измерения ±(1,5 – 6)%, малой чувствительностью, большой мощностью потребления, ограниченным частотным диапазоном.

Измерение мощности термоэлектрическим ваттметром. Частотный диапазон может быть расширен до 1МГц, если квадратор построить на бесконтактных термопреобразователях.

Термоэлектрический ваттметр отличается от выпрямительного тем, что вместо диодов включаются нагреватели бесконтактных термопар, а разность термо-ЭДС на холодных концах, измеряемая магнитоэлектрическим милливольтметром, пропорциональна средней мощности потребления нагрузки.

Термоваттметры используют при измерении мощности в цепях с несинусоидальной формой тока и напряжения; при измерении мощности в цепях с большим сдвигом фаз между напряжением и током, при определении частотной погрешности электродинамических ваттметров.

Измерение мощности ваттметром с преобразователем Холла. Преобразователь Холла представляет собой четырехполюсник, выполненный в виде тонкой полупроводниковой монокристаллической пластины. Токовыми выводами Т – Т преобразователь Холла подключается к внешнему источнику постоянного или переменного тока, потенциальными выводами

Х – Х , между которыми возникает ЭДС в момент, когда на пластину воздействует магнитное поле, — к измерителю напряжения. Выводы Х – Х присоединяются к боковым граням в эквипотенциальных точках при отсутствии внешнего магнитного поля.

Электродвижущая сила Холла

ех = kxBix,

где kx — коэффициент, значение которого зависит от материала, размеров и формы пластин, а также от температуры окружающей среды и значения магнитного поля; В – магнитная индукция.

Электродвижущая сила Холла будет пропорциональна мощности, если одну из выходных величин сделать пропорциональной напряжению u, а другую – ток через нагрузку.

Для реализации преобразователь Холла помещают в зазор электромагнита, намагничивающая катушка L которого питается током, пропорциональным току нагрузки, а через Т – Т проходит ток, пропорциональный напряжению, приложенному к нагрузке Z. Значение тока ограничивается добавочным резистором Rд. ЭДС Холла ех = kui = kp регистрируется магнитоэлектрическим милливольтметром (k – коэффициент пропорциональности).

Ваттметры с преобразователем Холла позволяют измерять мощности в диапазоне частот до сотен мегагерц.

Достоинства этих ваттметров – безынерционность, простота конструкции, долговечность, надежность, а недостаток – зависимость параметров от температуры.

Источник: http://works.doklad.ru/view/so535f2vwiI.html

Измерение электрической энергии. Получение электрической энергии. Единицы измерения электрического тока

Когда мы включаем свет, компьютер, слушаем радио или смотрим телевизор, то используем электричество – самую удобную форму энергии. Это действительно так, ведь электричество быстро передаётся по проводам и кабелям и легко трансформируется во многие другие формы энергии, в том числе световую, тепловую, звуковую и двигательную.

Что называется электричеством?

Электричество – это движение. Или поток крохотных частиц атомов (электронов), которые имеют электрический заряд. Электроны движутся вокруг ядра в центре атома.

Читайте также:  Схемы включения трансформаторов напряжения

Но если электрон получает достаточно энергии,  он может оторваться от «своего» атома и перейти к другому, от которого уже отсоединился электрон и, в свою очередь, перешёл к новому атому и т.д. Движущиеся электроны представляют собой энергию.

Миллиарды таких электронов, передвигающихся в одном и том же направлении, создают электрическое течение – ток.

Электрическая энергия или заряд не всегда движется. Она способна накапливаться снаружи изолятора. Так, если потереть пластмассовую расчёску, на её поверхности появится заряд – статическое электричество, и расчёска сможет притянуть лёгкие предметы, например кусочки тонкой бумаги.

Статистическое электричество

Все ли вещества могут проводить электричество?

Только некоторые вещества являются проводниками электричества. Большинство металлов, особенно серебро и золото, эффективно проводят электрический ток.

Многие другие вещества обладают высоким сопротивлением по отношению к электрическому току и являются изоляторами (дерево, стекло, пластик, бумага, картон, керамика).

Электрические провода обычно имеют проводящий стержень в виде металлической жилы, покрытый пластиковым кожухом для изоляции, который предотвращает утечку электричества.

Электрические единицы.

Электричество измеряется разными способами с помощью специальных приборов.

Ампер (А) – величина или количество электрического тока. Один ампер равен примерно 6 на 1018 электронов, проходящих через сечение провода за одну секунду.

Вольт (В) – это показатель напряжения электричества, данный параметр называют также  электродвижущей силой (ЭДС). Обычная батарейка для фонарика содержит 1,5 В. аккумулятор в автомобиле 12 В, сетевое электричество во многих странах, например во Франции и США, равно 110 В, а в России 220-240 В.

Ом – единица измерения сопротивления электрического тока. Хороший медный проводник длиной 1 метр не имеет ни одного Ома, а хороший изолятор той же длины, например из дерева, имеет миллионы Ом.

Ватт (Вт) – единица мощности электрического тока. В научных вычислениях ватт является скоростью изменения энергии (с которой энергия меняется или преобразуется). 1 Вт равен 1 Дж энергии в секунду.

Обычная лампочка накаливания может быть от 60 до 100 ватт, а комнатный обогреватель – 1000Вт.

Ватты могут служить для измерения не только электроэнергии, но и любой формы используемой энергии. Например, человеку для пробежки трусцой требуется 500 Вт, а семейный автомобиль производит около 100 000 Вт.

Лошадиная сила (л. с.) является устаревшей единицей измерения энергии, 1 л. с. Равна 746 Вт.

Во время производства электроэнергии типичная ветротурбина вырабатывает около 1 мегаватта (миллион ватт, МВт). Самая большая гидроэлектростанция производит более 10 000 МВт.

Источник: http://yznaj-ka.ru/texnologii/nauka-i-texnika/izmerenie-elektricheskoj-energii-poluchenie-elektricheskoj-energii-edinicy-izmereniya-elektricheskogo-toka/

Большая Энциклопедия Нефти и Газа

Cтраница 1

Измерение электрической энергии в трехфазных четы-рехпроводных цепях производится трехэлементным счетчиком. Он имеет три электромагнитные системы, такие же, как и у однофазного счетчика, которые воздействуют на три диска, укрепленные на одной оси с шестеренкой для приведения в действие счетного механизма.  [2]

Измерение электрической энергии за определенный промежуток времени выполняется на трансформаторных подстанциях со стороны первичного, а иногда и вторичного напряжения, где устанавливают счетчики активной и реактивной энергии, которые включают через соответствующие измерительные трансформаторы напряжения и тока. При учете электрической энергии со стороны вторичного напряжения измерительные трансформаторы напряжения могут отсутствовать.  [3]

Измерение электрической энергии ча определенный промежуток времени выполняется на трансформаторных подстанциях со стороны первичного, а иногда и вторичного напряжения, где устанавливают счетчики активной и реактивной энергии, которые включают через соответствующие измерительные трансформаторы напряжения и тока. При учете электрической энергии со стороны вторичного напряжения измерительные трансформаторы напряжения могут отсутствовать.  [4]

Дляизмерения электрической энергии ( активной и реактивной) в цепях переменного тока используются счетчики индукционной системы, которым в последнее время все большую конкуренцию составляют электронные счетчики.  [5]

Дляизмерения электрической энергии в четырехпро-водных цепях применяются трехэлементные счетчики. Схема включения такого счетчика ( рис. 12 — 7) принципиально та же, что и ваттметра. Счетчик имеет один счетный механизм. Устройство каждой электромагнитной системы трехэлементного счетчика ничем не от личается от устройства электромагнитной системы одно фазного счетчика.  [6]

Дляизмерения электрической энергии пользуются электрическими счетчиками. Счетчики для измерения переменного тока обычно строятся на принципе индукционной системы.

Две обмотки счетчика, из которых одна включается последовательно в цепь, а вторая параллельно, создают вращающееся магнитное поле, которое пересекает алюминиевый диск и индуктирует в нем вихревые токи.

Последние, взаимодействуя с полем, заставляют диск вращаться. Вращение диска передается счетному механизму.  [7]

Схема включения приборов для контроля работы генератора.  [8]

Дляизмерения электрической энергии применяют трехфазные индукционные счетчики, включаемые по схеме двух ваттметров.  [9]

Дляизмерения электрической энергии применяются индукционные счетчики класса 2 5, использование которых приводит к большим отклонениям в отпуске и потреблении электроэнергии. Более совершенны электронные счетчики, имеющие значительно меньшую погрешность измерения.  [10]

Единицейизмерения электрической энергии является джоуль ( дж) I дж I в х I к 0 239 кал 10 эрг.  [11]

Диапазонизмерения электрической энергии определяется диапазонами изменения номинальных ( максимальных) токов и напряжений. Для энергии, потребляемой различными электротехническими устройствами, нижний предел диапазона измерения тока равен примерно 10 — 9 А, а напряжения — 10 — 6 В. Верхний предел диапазона измерения тока достигает Ю4 А, а напряжение — 106 В.  [12]

Основные характеристики милливольт и миллиамперметров М-82.  [13]

Приборы дляизмерения электрической энергии называются счетчиками и градуируются в киловатт-часах.  [14]

Применяемые визмерениях электрической энергии приборы: потенциометры, нормальные элементы и образцовые катушки сопротивления должны периодически проверяться в специальных поверочных учреждениях.

Приборы измерения времени можно с достаточной точностью проверить самостоятельно по радиосигналам точного времени. Подробнее об измерении электрической энергии в калориметрии будет сказано в гл.

 [15]

Страницы:      1    2    3    4

Источник: http://www.ngpedia.ru/id52197p1.html

Электрические величины и единицы их измерения

Электрическим током (I) называется направленное движение электрических зарядов (ионов — в электролитах, электронов проводимости в металлах). Необходимым условием для протекания электрического тока является замкнутость электрической цепи.

Электрический ток измеряется в амперах (А).

Производными единицами измерения тока являются: 1 килоампер (кА) = 1000 А; 1 миллиампер (мА) 0,001 А; 1 микроампер (мкА) = 0,000001 А. Человек начинает ощущать проходящий через его тело ток в 0,005 А. Ток больше 0,05 А опасен для жизни человека.

Читайте также:  Как электроэнергия поступает с генераторов электростанций в энергосистему

Электрическим напряжением (U) называется разность потенциалов между двумя точками электрического поля.

Единицей разности электрических потенциалов является вольт (В).

1 В = (1 Вт) : (1 А). Производными единицами измерения напряжения являются: 1 киловольт (кВ) = 1000 В; 1 милливольт (мВ) = 0,001 В; 1 микровольт (мкВ) = 0,00000 1 В.

Сопротивлением участка электрической цепи называется величина, зависящая от материала проводника, его длины и поперечного сечения.

Электрическое сопротивление измеряется в омах (Ом). 1 Ом = (1 В) : (1 А).

Производными единицами измерения сопротивления являются: 1 килоОм (кОм) = 1000 Ом; 1 мегаОм (МОм) = 1 000 000 Ом; 1 миллиОм (мОм) = 0,001 Ом; 1 микроОм (мкОм) = 0,00000 1 Ом.

Электрическое сопротивление тела человека в зависимости от ряда условий колеблется от 2000 до 10 000 Ом.

Удельным электрическим сопротивлением (ρ) называется сопротивление проволоки длиной 1 м и сечением 1 мм2 при температуре 20 °С.

Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью (γ).

Мощностью (Р) называется величина, характеризующая скорость, с которой происходит преобразование энергии, или скорость, с которой совершается работа.

Мощностью генератора называется величина, характеризующая скорость, с которой механическая или другая энергия преобразуется в генераторе в электрическую. Мощностью потребителя называется величина, характеризующая скорость, с которой происходит преобразование электрической энергии в отдельных участках цепи в другие полезные виды энергии.

Системной единицей мощности в СИ является ватт (Вт). Он равен мощности, при которой за 1 секунду выполняется работа в 1 джоуль: 1Вт = 1Дж/1сек Производными единицами измерения электрической мощности являются: 1 киловатт (кВт) = 1000 Вт; 1 мегаватт (МВт) = 1000 кВт = 1 000 000 Вт; 1 милливатт (мВт) = 0,001 Вт; о1i 1 лошадиная сила (л. с.) = 736 Вт = 0,736 кВт.

Единицами измерения электрической энергии являются:

1 ватт-секунда (Вт сек) = 1 Дж = (1 Н) (1 м); 1 киловатт-час (кВт ч) = 3,б 106 Вт сек. Пример. Ток, потребляемый электродвигателем, присоединенным к сети 220 В, составлял 10 А в течение 15 минут. Определить энергию, потребленную двигателем. Вт*сек, или, разделив эту величину на 1000 и 3600, получим энергию в киловатт-часах: W = 1980000/(1000*3600) = 0,55кВт*ч

Таблица 1. Электрические величины и единицы

Наименование Обозначениелатинскимшрифтом Единицы измерения
Наименование Обозначение русским шрифтом
НапряжениеЭлектродвижущая силаТокСопротивление активноеСопротивление реактивноеСопротивление полноеМощность активная Мощность реактивнаяМощность полнаяЭнергия U, uE, eI, iR, rX, xZ, zPQSW ВольтВольтАмперОмОмОмВаттВольт-амперреактивныйВольт-амперВатт-секунда или джоуль ВВАОмОмОмВтварВАВт*сек, дж

Источник: http://www.eti.su/articles/spravochnik/spravochnik_455.html

История возникновения приборов учёта и измерения электрической энергии

Девятнадцатый век принёс множество величайших изобретений и открытий в области электричества и электроснабжения. Как говорил английский математик и философ Альфред Норд Вайтхэд, главным открытием века было изобретение метода изобретений.

Вырабатывать электроэнергию в больших количествах стало возможным с созданием динамо-машины. Одной из первых областей использования электричества стало освещение.

С началом массовых продаж такого нового продукта, как электроэнергия, появилась необходимость определения его цены.

Первый счетчик электроэнергии, основанный на измерении часов работы лампы, изобрел Самюэль Гардинер. Принцип работы данного счетчика заключался в том, что электроэнергия, подававшаяся в точку нагрузки и лампы, подключенные к счетчику, контролировались одним выключателем. Со временем, с появлением лампы Эдисона и разветвленных цепей освещения, счетчик перестали применять.

Томас Эдисон утверждал, что электроэнергию нужно продавать как газ, широко используемый в те времена для освещения. Счетчик Эдисона основан на электрохимическом эффекте тока.

В счетчике установлена электролитическая ячейка, в нее непосредственно перед началом измерений помещалась точно взвешенная пластинка меди. Проходящий через электролит ток вызывал осаждение меди, что и отражало количество электричества прошедшего через медную пластинку.

Использование такого счетчика позволяло выставлять счета на оплату в кубических футах газа.

Другой принцип конструкции счетчиков был основан на создании движения (колебания или вращения) соразмерного энергии, запускающей счетный механизм для отображения измерений. Принцип работы маятникового считка описали американцы Вильям Эдвард и Джон Пери еще в 1881 году.

В счетчике к источнику напряжения подключались два маятника с катушками. Токовые катушки с противоположными обмотками размешались под маятниками. В результате взаимодействия катушек маятник с электрической нагрузкой двигался медленнее, чем маятник без нагрузки.

Получаемая таким образом разность хода передавалась счетному механизму. Каждую минуту маятники менялись ролями для компенсации разницы в исходной частоте колебаний.

Существенным недостатком маятникового счетчика являлось то, что его можно было применять исключительно в сетях постоянного тока.

С развитием систем переменного тока и созданием Люсьеном Голаром и Джоном Диксоном «вторичного генератора», предшественника современного трансформатора, мыслителям девятнадцатого века пришлось решить принципиально новую задачу — измерение электроэнергии переменного тока.

Так, в 1885 году итальянский ученый Галилео Феррарис сделал немаловажное открытие, заключающееся в том, что два разных по фазе поля переменного тока могут вращать сплошной ротор, к примеру, диск или цилиндр.

Через три года Шелленбергер, также открывший эффект вращающихся полей, создал прибор учета электроэнергии переменного тока. В его счетчике не было элемента напряжения, для учета коэффициента мощности, поэтому он не годился для работы с электродвигателями.

Однако данные открытия стали основой в создании индукционных двигателей и счетчиков. В 1889 году электрический счётчик для переменных токов был запатентован венгром Отто Титуц Блати.

В последующие годы индукционный счетчик претерпел множество изменений и усовершенствований, а к двадцатому столетию и вовсе были разработаны трехфазные индукционные счетчики с двумя или тремя системами измерения. Такие счетчики до сих пор производятся и добросовестно выполняют свою работу по учету электроэнергии.

С появлением в 70-х годах двадцатого века первых аналоговых и цифровых интегральных микросхем толчок в развитии получили и счетчики электрической энергии. Тогда использовались стационарные счетчики, основанные на принципе времяимпульсного умножения.

В данное время в электросчетчиках применяются новейшие электронные технологии с цифровой обработкой сигналов и встроенным программным обеспечением.

Развитие приборов учета электроэнергии не прекращается, вместе с чем меняются принципы и правила проведения электромонтажных работ по их установке, а также методы электроизмерений для обеспечения надежной и качественной работы электрооборудования.

Источник: http://fis.bobrodobro.ru/5847

Ссылка на основную публикацию